Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling

Authors

  • Александр Михайлович Федоров St. Petersburg State University, University Emb. 7-9, St. Petersburg, Russia, 199034; Scientific Foundation "Nansen International Center for the Environment and Remote Sensing", St. Petersburg, Russia, 199034
  • Игорь Львович Башмачников St. Petersburg State University, University Emb. 7-9, St. Petersburg, Russia, 199034; Scientific Foundation "Nansen International Center for the Environment and Remote Sensing", St. Petersburg, Russia, 199034
  • Татьяна Васильевна Белоненко St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2019.308

Abstract

In the center of the Lofoten basin in the Norwegian Sea, a unique natural phenomenon which is located which is a quasi-permanent anticyclonic Lofoten vortex (LV). Winter deep convection is a necessary condition for its stability and one of the main mechanisms of its existence, as it creates favorable conditions for its annual regeneration. Another mechanism to maintain a high anticyclonic vorticity in the center of the basin is the capture of mesoscale eddies that break away from the Norwegian Current. Despite the fact that the important role of deep convection in the mechanisms of annual regeneration of the LV is generally recognized, today in the scientific community there is no consensus on the intensity of winter convection in the region. We estimate a depth of mixed layer (MLD) in the Lofoten basin. We use the method formulated by Dukhovskoy for estimation. Unlike other known methods, this method does not have any predetermined criterion of density difference, and a necessary rule is determined by the features of the profile itself. We compared estimation of MLD in the Lofoten basin according to MITgcm data and ARGO buoys data. Estimates of the MLD and the spatial distribution of their maximum values are obtained for the Lofoten basin. The spatial distribution of Argo profiles is considered. It is shown that T-S diagrams constructed on these profiles are characterized by a pronounced homogeneity and a slight change in density inside the Lofoten vortex (LV) in contrast to the profiles located outside the vortex. The LV area coincides completely with the region of the highest values of the MLD, and this proves the key role of deep convection in the existence of an anticyclonic vortex in the center of the basin, as well as the need for its study. Graphs of the spatial distribution of MLD in excess of 300 and 500 m are analyzed.

Keywords:

Norwegian Sea, Lofoten vortex, Lofoten basin, deep convection, ARGO, mixed layer depth, MITgcm, MLD

Downloads

Download data is not yet available.
 

References

Литература

Башмачников, И. Л., Федоров, А. М., Весман, А. В., Белоненко, Т. В., Колдунов, А. В., Духовской, Д. C., 2018. Термохалинная конвекция в субполярных морях Северной Атлантики и Северо-Европейского бассейна СЛО по спутниковым и натурным данным. Ч. 1: Локализация областей конвекции. Современные проблемы дистанционного зондирования Земли из космоса 15 (7), 184–194. https://doi.org/10.21046/2070-7401-2018-15-7-184-194.

Белоненко, Т. В., Волков, Д. Л., Норден, Ю. Е., Ожигин, В. К., 2014. Циркуляция вод в Лофотенской котловине Норвежского моря. Вестник СПбГУ. Науки о Земле 7 (2), 108–121.

Белоненко, Т. В., Колдунов, А. В., Сентябов, Е. В., Карсаков, А. Л., 2018. Термохалинная структура Лофотенского вихря Норвежского моря на основе экспедиционных исследований и по данным гидродинамического моделирования. Вестник СПбГУ. Науки о Земле 63 (4), 502–519.

Блошкина, Е. В., Иванов, В. В., 2016. Конвективные структуры в Норвежском и Гренландском морях по результатам моделирования с высоким пространственным разрешением. Труды Гидрометеорологического научно-исследовательского центра Российской Федерации 361, 146–168.

Колдунов, А. В., Колдунов, Н. В., Волков, Д. Л., Белоненко, Т. В., 2015. Применение спутниковых данных для валидации гидродинамической модели Северного Ледовитого океана. Современные проблемы дистанционного зондирования Земли из космоса 12 (6), 111–124.

Суховей, В. Ф., 1986. Моря Мирового океана. Гидрометеоиздат, Ленинград.

Фалина, А. С., Сарафанов, А. А., Добролюбов, С. А., Запотылько, В. С., Гладышев, С. В., 2017. Конвекция и стратификация вод на севере Атлантического океана по данным измерений зимой 2013/14 гг. Вестник Московского ун-та. Серия 5: География 4, 45–54.

Федоров, А. М., Башмачников, И. Л., Белоненко, Т. В., 2018. Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингер. Вестник Санкт-Петербургского университета. Науки о Земле 63 (3), 345–362. https://doi.org/10.21638/spbu07.2018.306.

Alexeev, V. A., Ivanov, V. V., Repina, I. A., Lavrova, O. Yu., Stanichny, S. V., 2016. Convective structures in the Lofoten Basin based on satellite and Argo data. Izv. Atmos. Ocean. Phys 52 (9), 1064–1077. https://doi.org/10.1134/S0001433816090036.

Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Res I (128), 1–27. http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Belonenko, T. V., Fedorov, A. M., Bashmachnikov, I. L., Fuks, B. R, 2018. Current Intensity Trends in the Labrador and Irminger Seas Based on Satellite Altimetry Data. Izvestiya, Atmospheric and Oceanic Physics 54 (9), 1031–1038. https://doi.org/10.1134/S0001433818090074.

Belonenko, T. V., Fedorov, A. M., 2018. Steric Level Fluctuations and Deep Convection in the Labrador and Irminger Seas. Izvestiya, Atmospheric and Oceanic Physics 54 (9), 1039–1049. https://doi.org/10.1134/S0001433818090086.

Blindheim, J., Østerhus, S., 2013. The Nordic Seas, Main Oceanographic Features. In: The Nordic Seas: An Integrated Perspective / H. Drange, T. Dokken, T. Furevik, R. Gerdes and W. Berger (eds.). American Geophysical Union, Washington, 11–37. https://doi.org/10.1029/158GM03.

de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D., 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, 12003. https://doi.org/10.1029/2004JC002378.

Dukhovskoy, D. S., Chassignet, E. P., Hogan, P. J., Metzger, E. J., Posey, P., Smedstad, O. M., Stefanova, L. B., Wallcraft, A. J., 2016. Current State and Recent Changes in the Arctic Ocean from the HYCOMNCODA Global Ocean and Sea Ice Prediction System. American Geophysical Union, San Francisco.

Even, J. Ø., Nilsen, E. F., 2006. Variations of mixed layer properties in the Norwegian Sea for the period 1948–1999, Progress in Oceanography 70 (1), 58–90. https://doi.org/10.1016/j.pocean.2006.03.014.

Kantha, L. H., Clayson, C. A., 2000. Small Scale Processes in Geophysical Fluid Flows International Geophysics Series, vol. 67. Academic Press, San Diego.

Kara, A. B., Rochford, P. A., Hurlburt, H. E., 2003. Mixed layer depth variability over the global ocean, J. Geophys. Res. 108, 3079, https://doi.org/10.1029/2000JC000736, C3.

Köhl, A., 2007. Generation and Stability of a Quasi-Permanent Vortex in the Lofoten Basin. J. Phys. Oceanography 37, 2637–2651.

Korablev, A. A., Smirnov, A., Baranova, O. K., 2014. Climatological Atlas of the Nordic Seas and Northern North Atlantic / D. Seidov and A. R. Parsons (eds). International Ocean Atlas and Information Series 13. Silver Spring, Maryland. https://doi.org/10.7289/V5K64G16.

Marshall, J., Schott, F., 1999. Open‐ocean convection: Observations, theory, and models. Reviews of Geophysics 37 (1), 1–64.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice‐ocean simulation with optimized model parameters: approach and assessment. J. Geophys. Res. 116, 4025. http://dx.doi.org/10.1029/2010JC006573

Nilsen, J. E., Falck, E., 2006. Variations of mixed layer properties in the Norwegian Sea from the period 1948–1999. Progress in Oceanography 70, 58–90.

Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., Halo, I., 2015. The Lofoten Vortex of the Nordic Seas. Deep-Sea Res 196, 1–14.

Richards, C. G., Straneo, F., 2015. Observations of Water Mass Transformation and Eddies in the Lofoten Basin of the Nordic Seas. J. Phys. Oceanography 45, 1735–1756. https://doi.org/10.1175/JPOD-14-0238.1.

Søiland, H., Rossby, T., 2013. On the structure of the Lofoten Basin Eddy. J. Geophys. Res. Oceans 118, 4201–4212. https://doi.org/10.1002/jgrc.20301.

Søiland, H., Chafik, L., Rossby, T., 2016. On the long‐term stability of the Lofoten Basin Eddy. J. Geophys. Res. Oceans 121, 4438–4449. https://doi.org/10.1002/2016JC011726.

Spall, M. A., 2010. Non-local topographic influences on deep convection: An idealized model for the Nordic Seas. Ocean Modelling 32 (1–2), 72–85. https://doi.org/10.1016/j.ocemod.2009.10.009.

Volkov, D. L., Kubryakov, A. A., Lumpkin R., 2015. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model. Deep-Sea Res. I (105), 142–157. https://doi.org/10.1016/j.dsr.2015.09.001.

Yu, L. ‐S., Bosse, A., Fer, I., Orvik, K. A., Bruvik, E. M., Hessevik, I., Kvalsund, K., 2017. The Lofoten Basin eddy: Three years of evolution as observed by Seagliders. J. Geophys. Res. Oceans 122, 6814–6834, https://doi.org/10.1002/2017JC012982.


References

Alexeev, V. A., Ivanov, V. V., Repina, I. A., Lavrova, O. Yu., Stanichny, S. V., 2016. Convective structures in the Lofoten Basin based on satellite and Argo data. Izv. Atmos. Ocean. Phys 52 (9), 1064–1077. https://doi.org/10.1134/S0001433816090036.

Bashmachnikov, I. L., Fedorov, A. M., Vesman, A. V., Belonenko, T. V., Koldunov, A. V., Dukhovskoi, D. C., 2018. The thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: Localization of the deep convection sites. Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa 15 (7), 184–194. https://doi.org/10.21046/2070-7401-2018-15-7-184-194. (In Russian)

Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Res I (128), 1–27. http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Belonenko, T. V., Fedorov, A. M., 2018. Steric Level Fluctuations and Deep Convection in the Labrador and Irminger Seas. Izvestiya, Atmospheric and Oceanic Physics 54 (9), 1039–1049. https://doi.org/10.1134/S0001433818090086.

Belonenko, T. V., Fedorov, A. M., Bashmachnikov, I. L., Fuks, B. R., 2018. Current Intensity Trends in the Labrador and Irminger Seas Based on Satellite Altimetry Data. Izvestiya, Atmospheric and Oceanic Physics 54 (9), 1031–1038. https://doi.org/10.1134/S0001433818090074.

Belonenko, T. V., Koldunov, A. V., Sentiabov, E. V., Karsakov, A. L., 2018. Thermohaline structure of the Lofoten vortex in the Norwegian Sea based on in-situ and model data. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle 63 (4), 502–519. https://doi.org/10.21638/spbu07.2018.406. (In Russian)

Belonenko, T. V., Volkov, D. L., Norden, Iu. E., Ozhigin, V. K., 2014. Currents circulation in the Lofoten basin of the Norwegian Sea. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle 7 (2), 108–121. (In Russian)

Blindheim, J., Østerhus, S., 2013. The Nordic Seas, Main Oceanographic Features. In: The Nordic Seas: An Integrated Perspective / H. Drange, T. Dokken, T. Furevik, R. Gerdes and W. Berger (eds). American Geophysical Union, Washington, 11–37. https://doi.org/10.1029/158GM03.

Bloshkina, E. V., Ivanov, V. V., 2016. Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution. Trudy Gidrometeorologicheskogo nauchnoissledovatel’skogo tsentra Rossiiskoi Federatsii 361, 146–168. (In Russian)

de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D., 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology. J. Geophys. Res. 109, 12003, https://doi.org/10.1029/2004JC002378.

Dukhovskoy, D. S., Chassignet, E. P., Hogan, P. J., Metzger, E. J., Posey, P., Smedstad, O. M., Stefanova, L. B., Wallcraft, A. J., 2016. Current State and Recent Changes in the Arctic Ocean from the HYCOM-NCODA Global Ocean and Sea Ice Prediction System. American Geophysical Union, San Francisco.

Even, J. Ø., Nilsen, E. F., 2006. Variations of mixed layer properties in the Norwegian Sea for the period 1948–1999, Progress in Oceanography 70 (1), 58–90, https://doi.org/10.1016/j.pocean.2006.03.014.

Falina, A. S., Sarafanov, A. A., Dobroliubov, S. A., Zapotyl’ko, V. S., Gladyshev, S. V., 2017. Convection and water stratification in the North Atlantic Ocean according to measurements in winter 2013/14. Vestnik Moskovskogo universiteta, Seriia 5: Geografiya 4, 45–54. (In Russian)

Fedorov, A. M., Bashmachnikov, I. L., Belonenko, T. V., 2018. Localization of areas of deep convection in the of the North European Basin, Labrador and Irminger. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle 63 (3), 345–362. https://doi.org/10.21638/spbu07.2018.306. (In Russian)

Kantha, L. H., Clayson, C. A., 2000. Small Scale Processes in Geophysical Fluid Flows International Geophysics Series, vol. 67. Academic Press, San Diego.

Kara, A. B., Rochford, P. A., Hurlburt, H. E., 2003. Mixed layer depth variability over the global ocean, J. Geophys. Res. 108, 3079. https://doi.org/10.1029/2000JC000736,C3.

Köhl, A., 2007. Generation and Stability of a Quasi-Permanent Vortex in the Lofoten Basin. J. Phys. Oceanography 37, 2637–2651.

Koldunov, A. V., Koldunov, N. V., Volkov, D. L., Belonenko, T. V., 2015. Applying Satellite Data for Validation of the Hydrodynamic Model for the Arctic Ocean. Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa 12 (6), 111–124. (In Russian)

Korablev, A. A., Smirnov, A., Baranova, O. K., 2014. Climatological Atlas of the Nordic Seas and Northern North Atlantic / D. Seidov and A. R. Parsons (eds). International Ocean Atlas and Information Series 13. Silver Spring, Maryland. https://doi.org/10.7289/V5K64G16.

Marshall, J., Schott, F., 1999. Open‐ocean convection: Observations, theory, and models. Reviews of Geophysics 37 (1), 1–64.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice‐ocean simulation with optimized model parameters: approach and assessment. J. Geophys. Res. 116, 4025. http://dx.doi.org/10.1029/2010JC006573

Nilsen, J. E., Falck, E., 2006. Variations of mixed layer properties in the Norwegian Sea from the period 1948–1999. Progress in Oceanography 70, 58–90.

Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., Halo, I., 2015. The Lofoten Vortex of the Nordic Seas. Deep-Sea Res. 196, 1–14.

Richards, C. G., Straneo, F., 2015. Observations of Water Mass Transformation and Eddies in the Lofoten Basin of the Nordic Seas. J. Phys. Oceanography 45, 1735–1756. https://doi.org/10.1175/JPOD-14-0238.1.

Søiland, H., Chafik, L., Rossby, T., 2016. On the long‐term stability of the Lofoten Basin Eddy. J. Geophys. Res. Oceans 121, 4438–4449. https://doi.org/10.1002/2016JC011726.

Søiland, H., Rossby, T., 2013. On the structure of the Lofoten Basin Eddy. J. Geophys. Res. Oceans 118, 4201–4212. https://doi.org/10.1002/jgrc.20301.

Spall, M. A., 2010. Non-local topographic influences on deep convection: An idealized model for the Nordic Seas. Ocean Modelling 32 (1–2), 72–85. https://doi.org/10.1016/j.ocemod.2009.10.009.

Sukhovei, V. F., 1986. Morya Mirovogo okeana [Seas of the World Ocean]. Gidrometeoizdat, Leningrad. (In Russian).

Volkov, D. L., Kubryakov, A. A., Lumpkin, R., 2015. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model. Deep-Sea Res I (105), 142–157. https://doi.org/10.1016/j.dsr.2015.09.001.

Yu, L. ‐S., Bosse, A., Fer, I., Orvik, K. A., Bruvik, E. M., Hessevik, I., Kvalsund, K., 2017. The Lofoten Basin eddy: Three years of evolution as observed by Seagliders. J. Geophys. Res. Oceans 122, 6814–6834, https://doi.org/10.1002/2017JC012982.

Published

2019-07-23

How to Cite

Федоров, А. М., Башмачников, И. Л. and Белоненко, Т. В. (2019) “Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling”, Vestnik of Saint Petersburg University. Earth Sciences, 64(3). doi: 10.21638/spbu07.2019.308.

Issue

Section

Articles

Most read articles by the same author(s)