Термохалинная структура Лофотенского вихря Норвежского моря на основе экспедиционных исследований и по данным гидродинамического моделирования

Авторы

  • Татьяна Васильевна Белоненко Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9 https://orcid.org/0000-0003-4608-7781
  • Алексей Владимирович Колдунов Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9 https://orcid.org/0000-0002-1650-4348
  • Евгений Валериевич Сентябов Полярный НИИ морского рыбного хозяйства и океанографии (ПИНРО), Российская Федерация, 183038, Мурманск, ул. Книповича, 6
  • Алексей Леонидович Карсаков Полярный НИИ морского рыбного хозяйства и океанографии (ПИНРО), Российская Федерация, 183038, Мурманск, ул. Книповича, 6

DOI:

https://doi.org/10.21638/spbu07.2018.406

Аннотация

Впервые рассматриваются материалы океанографических съемок в Лофотенской котловине, выполненных в ходе исследований в Норвежско-Гренландском бассейне на научно-исследовательском судне ПИНРО «Фритьоф Нансен» в июле 1998 г., в 2000-2002 и 2005 гг. Наблюдения на океанографических станциях велись в режиме непрерывного зондирования от поверхности моря до глубины 1000 м с последующим осреднением результатов через 1 м. В разные годы станции гидрологических разрезов располагались на различных расстояниях друг от друга - в диапазоне 20-30 миль. В работе анализируются данные ПИНРО по температуре и солености на двух гидрологических разрезах, выполненных по координатам 69°20’ и 70°00’ с. ш. за июль 1998, 2000-2002 и 2005 гг. Эти разрезы сравниваются с подобными гидрологическими разрезами, построенными по данным реализации гидродинамической модели высокого разрешения MITgcm. Установлено, что наибольшие горизонтальные контрасты температуры и солености характерны для Лофотенского вихря - области с размерами 180-200 миль по горизонтали и более 1000 м по вертикали, ее ядро расположено в слое 200-800 м глубины и имеет радиус 20-60 км. Установлено, что наряду с квазипостоянным Лофотенским вихрем в котловине наблюдаются мезомасштабные вихри, расположенные на глубине 50-500 м, пространственные масштабы и градиенты характеристик которых сравнимы с характеристиками Лофотенского. Распределения значений термохалинных характеристик, полученные по данным гидрологических разрезов ПИНРО и по модели MITgcm, в целом согласуются, но в большинстве случаев модельные данные имеют несколько большие зональные градиенты температуры и солености. На основе прямого сравнения модельных данных и натурных измерений показано, что в указанные периоды данные MITgcm адекватно отражают гидрологические параметры акватории и могут использоваться для ретроспективного анализа вихревой активности Лофотенской котловины.

Ключевые слова:

Норвежское море, Лофотенская котловина, Лофотенский вихрь, синоптические, мезомасштабные вихри, гидрологические разрезы, температура, соленость, MITgcm

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Алексеев, В. А., Иванов, В. В., Репина, И. А., Лаврова, О. Ю., Станичный, С. В., 2016. Конвективные структуры в Лофотенской котловине по данным спутников и буев Арго. Исследование Земли из космоса 1-2, 90-104.

Башмачников, И. Л., Белоненко, Т. В., Куйбин, П. А., 2017. Приложение теории колоннообразных Q-вихрей с винтовой структурой к описанию динамических характеристики Лофотенского вихря Норвежского моря. Вестник Санкт-Петербургского университета. Науки о Земле 62(3), 221-336. URL: https://doi.org/10.21638/11701/spbu07.2017.301.

Белоненко, Т. В., Башмачников, И. Л., Колдунов, А. В., Куйбин, П. А., 2017. О вертикальной компоненте скорости в Лофотенском вихре Норвежского моря. Известия РАН. Физика атмосферы и океана 53(6), 728-737. URL: https://doi.org/10.7868/S0003351517060071.

Белоненко, Т. В., Волков, Д. Л., Ожигин, В. К., Норден, Ю. Е., 2014. Циркуляция вод в Лофотенской котловине Норвежского моря. Вестник Санкт-Петербургского университета. Сер. 7. Геология. География (2), 108-121.

Блошкина, Е. В., Иванов, В. В., 2016. Конвективные структуры в Норвежском и Гренландском морях по результатам моделирования с высоким пространственным разрешением. Труды Гидрометеорологического научно-исследовательского центра Российской Федерации 361, 146-168.

Иванов, В. В., Кораблев, А. А., 1995. Динамика внутрипикноклинной линзы в Норвежском море. Метеорология и гидрология 10, 55-62.

Колдунов, А. В., Колдунов, Н. В., Волков, Д. Л., Белоненко, Т. В., 2015. Применение спутниковых данных для валидации гидродинамической модели Северного Ледовитого океана. Современные проблемы дистанционного зондирования Земли из космоса 12(6), 111-124, 178-187.

Сентябов, Е. В., 2000. Колебания теплового состояния вод Норвежского моря во второй половине 1990-х гг. и их влияние на распределение пелагических рыб. Материалы отчет. сессии ПИНРО по итогам научно-исслед. работ в 1998-1999 гг. 1. ПИНРО, Мурманск.

Сентябов, Е. В., 2009. Межгодовые изменения океанографических условий в Норвежском море и их влияние на распределение пелагических рыб. URL: http://www.dissercat.com/content/mezhgodovye-izmeneniya-okeanograficheskikh-uslovii-v-norvezhskom-more-i-ikh-vliyanie-na-rasp (дата обращения: 03.12.2018).

Сентябов, Е. В., 2010. Закономерности пространственного распределения термохалинных характеристик на стандартных разрезах в южной части Норвежского моря. Вопросы промысловой океанологии 7(1), 189-205.

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., Johnson, D. R., 2010. Salinity, in: World Ocean Atlas 2009 Series 2 / Levitus, S. (ed.) U.S. Government Printing Office, Washington, D.C.

Bashmachnikov, I., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Research Part I: Oceanographic Research Papers 128, 1-27. URL: http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Daru, V., Tenaud, C., 2004. High order one-step monotonicity preserving schemes for unsteady compressible flow calculations. Journal of Computational Physics 193(2), 563-594. https://doi.org/10.1016/j.jcp.2003.08.023.

Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., Kumar, V., 2015. Data from: A daily global mesoscale ocean eddy dataset from satellite altimetry. URL: https://doi.org/105061/druad.gp40h (дата обращения: 14.01.2019).

Fox-Kemper, B., Menemenlis, D., 2008. Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime 177, 319-338. URL: https://doi.org/10.1029/177GM19.

Ikeda, M., Johannessen, J. A., Lygre, K., Sandven, S., 1989. A process study of mesoscale meanders and eddies in the Norwegian Coastal current. Journal of Physical Oceanography 19, 20-35.

Jackett, D. R., McDougall, T. J., 1995. Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology 12, 381-389.

Johannessen, J. A., Svendsen, E., Sandven, S., Johannessen, O. M., 1989. Three dimensional structure of mesoscale eddies in the Norwegian Coastal Current. Journal of Physical Oceanography 19, 3-19.

Kohl, A., 2007. Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography 37, 2637-2651. URL: http://dx.doi.org/10.1175/2007JPO3694.

Large, W. G., McWilliams, J. C., Doney, S., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics 32(4), 363-403.

Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies, in: Tech. Note NCAR/TN-460+STR. National Center for Atmospheric Research, Boulder, Colorado. URL: http://dx.doi.org/10.5065/D6KK98Q6.

Leith, C. E., 1996. Stochastic models of chaotic systems. Physica D: Nonlinear Phenomena 98(2-4), 481- 491. URL: https://doi.org/10.1016/0167-2789(96)00107-8.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K, Zweng, M. M., Johnson, D. R., 2010. Temperature, in: Levitus, S. (ed.). World Ocean Atlas 2009 Series 1. U.S. Government Printing Office, Washington, D.C.

Marshall, J., Adcroft A., Hill C, Perelman L., Heisey C., 1997. A finite-volume, incompressible Navier- Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans 102(C3), 5753-5766. URL: https://doi.org/10.1029/96JC02775.

Mork, K. A., Skagseth, O., 2010. A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography. Ocean Science 6, 901-911. https://doi.org/10.5194/os-6-901-2010.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice-ocean simulation with optimized model parameters: Approach and assessment. Journal of Geophysical Research: Oceans 116(C4), C04025. URL: https://doi.org/10.1029/2010JC006573.

Prokopchuk, I., Sentyabov, E., 2006. Diet of spring-spawning herring, mackerel and blue whiting related to Calanus finmarchicus distribution and hydrography in the Norwegian Sea. ICES Journal of Marine Science 63, 117-127.

Raj, R. P., Johannessen, J. A., Eldevik, T., Nilsen, J. E. O., Halo, I., 2016. Quantifying mesoscale eddies in the Lofoten Basin. Journal of Geophysical Research: Oceans 121(7), 4503-4521. URL: https://doi.org/10.1002/2016JC011637.

Rossby, T., Ozhigin, V., Ivshin, V., Bacon, S., 2009a. An isopyncal view of the Nordic seas hydrography with focus on properties of the Lofoten Basin. Deep Sea Research Part I: Oceanographic Research Papers 56, 1955-1971.

Rossby, T., Prater, M. D., Soiland, H., 2009b. Pathways of inflow and dispersion of warm waters in the Nordic seas. Journal of Geophysical Research: Oceans 114(C4), C04011. URL: https://doi.org/10.1029/2008JC005073.

Smith, W. H. F., Sandwell, D. T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334), 1956-1962.

Soiland, H., Chafik, L., Rossby, T., 2016. On the long-term stability of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans 121(7), 4438-4449. URL: https://doi.org/10.1002/2016JC011726.

Volkov, D. L., Belonenko, T. V., Foux, V. R., 2013. Puzzling over the dynamics of the Lofoten Basin - a sub- Arctic hot spot of ocean variability. Geophysical Research Letters 40(4), 738-743. URL: https://doi.org/10.1002/grl.50126.

Volkov, D. L., Kubryakov, A., Lumpkin, R., 2015. Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep Sea Research Part I: Oceanographic Research Papers 105, 142-157. URL: https://doi.org/10.1016/j.dsr.2015.09.001.


References

Alexeev, V. A., Ivanov, V. V., Repina, I. A., Lavrova, O. Yu., Stanichny, S. V., 2016. Konvektivnye struktury v Lofotenskoi kotlovine po dannym sputnikov i buev Argo [Convective Structures in Lofoten Basin from Remote Sensing Data and Argo Floats]. Issledovanie Zemli iz kosmosa [Earth exploration from space] 1–2, 90–104. (In Russian)

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., Johnson, D. R., 2010. Salinity, in: Levitus, S. (ed.) World Ocean Atlas 2009 Series 2. U. S. Government Printing Office, Washington, D.C.

Bashmachnikov, I. L., Belonenko, T. V., Kuibin, P. A., 2017. Prilozhenie teorii kolonnoobraznykh Q-vikhrei s vintovoi strukturoi k opisaniiu dinamicheskikh kharakteristiki Lofotenskogo vikhria Norvezhskogo moria [Application of the theory of columnar Q-vortices with helical structure to the description of the dynamic characteristics of the Lofoten vortex of the Norwegian Sea]. Vestnik of Saint Petersburg University. Earth Sciences 62(3), 221–336. Available at: https://doi.org/10.21638/11701/spbu07.2017.301. (In Russian).

Bashmachnikov, I., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Research Part I. Oceanographic Research Papers 128, 1–27. Available at: http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Belonenko, T. V., Bashmachnikov, I. L., Koldunov, A. V., Kuibin, P. A., 2017. O vertikal’noi komponente skorosti v Lofotenskom vikhre Norvezhskogo moria [On the Vertical Velocity Component in the Mesoscale Lofoten Vortex of the Norwegian Sea]. Izvestiia RAN. Fizika atmosfery i okeana [Izvestiya, Atmospheric and Oceanic Physics] 53(6), 641–649. https://doi.org/10.1134/S0001433817060032.

Belonenko, T. V., Volkov, D. L., Ozhigin, V. K., Norden, Yu. E., 2014. Tsirkuliatsiia vod v Lofotenskoi kotlovine Norvezhskogo moria [Circulation of waters in the Lofoten depression in the Norwegian Sea]. Vestnik of Saint Petersburg University. Earth Sciences (2), 108–121. (In Russian)

Bloshkina, E. V., Ivanov, V. V., 2016. Konvektivnye struktury v Norvezhskom i Grenlandskom moriakh po rezul’tatam modelirovaniia s vysokim prostranstvennym razresheniem [Convective structures in the Norwegian and Greenland Seas based on modeling results with high spatial resolution]. Trudy Gidrometeorologicheskogo nauchno-issledovatel’skogo tsentra Rossiiskoi Federatsii [Proceedings of the Hydrometcentre of Russia] 361, 146–168. (In Russian)

Daru, V., Tenaud, C., 2004. High order one-step monotonicity preserving schemes for unsteady compressible flow calculations. Journal of Computational Physics 193(2), 563–594. Available at: https://doi.org/10.1016/j.jcp.2003.08.023.

Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., Kumar, V., 2015. Data from: A daily global mesoscale ocean eddy dataset from satellite altimetry. Available at: https://doi.org/105061/druad.gp40h (дата обращения: 14.01.2019).

Fox-Kemper, B., Menemenlis, D., 2008. Can large eddy simulation techniques improve mesoscale rich ocean models? Ocean Modeling in an Eddying Regime 177, 319–338. Available at: https://doi.org/10.1029/177GM19.

Ikeda, M., Johannessen, J. A., Lygre, K., Sandven, S., 1989. A process study of mesoscale meanders and eddies in the Norwegian Coastal current. Journal of Physical Oceanography 19, 20–35.

Ivanov, V. V., Korablev, A. A., 1995. Dinamika vnutripiknoklinnoi linzy v Norvezhskom more [Dynamics of an intrapycnocline lens in the Norwegian Sea]. Meteorologiia i gidrologiia [Meteorology and Hydrology] 10, 55–62. (In Russian)

Jackett, D. R., McDougall, T. J., 1995. Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology 12, 381–389.

Johannessen, J. A., Svendsen, E., Sandven, S., Johannessen, O. M., 1989. Three dimensional structure of mesoscale eddies in the Norwegian Coastal Current. Journal of Physical Oceanography 19, 3–19.

Kohl, A., 2007. Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography 37, 2637–2651. Available at: http://dx.doi.org/10.1175/2007JPO3694.

Koldunov, A. V., Koldunov, N. V., Volkov, D. L, Belonenko, T. V., 2015. Primenenie sputnikovykh dannykh dlia validatsii gidrodinamicheskoi modeli Severnogo Ledovitogo okeana [Applying Satellite Data for Validation of the Hydrodynamic Model for the Arctic Ocean]. Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space] 12(6), 111–124. (In Russian)

Large, W. G., McWilliams, J. C., Doney, S., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics 32(4), 363–403.

Large, W., Yeager, S., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies, in: Tech. Note NCAR/TN-460+STR. National Center for Atmospheric Research. Boulder, Colorado. Available at: http://dx.doi.org/10.5065/D6KK98Q6.

Leith, C. E., 1996. Stochastic models of chaotic systems. Physica D: Nonlinear Phenomena 98(2–4), 481–491. Available at: https://doi.org/10.1016/0167-2789(96)00107-8.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K, Zweng, M. M., Johnson, D. R., 2010. Temperature, in: Levitus, S. (ed.) World Ocean Atlas 2009. Series 1. U.S. Government Printing Office, Washington, D.C.

Marshall, J., Adcroft A., Hill C, Perelman L., Heisey C., 1997. A finite-volume, incompressible Navier — Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans 102(C3), 5753–5766. Available at: https://doi.org/10.1029/96JC02775.

Mork, K. A., Skagseth, O., 2010. A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography. Ocean Science 6, 901–911. Available at: https://doi.org/10.5194/os-6-901-2010.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice?ocean simulation with optimized model parameters:Approach and assessment. Journal of Geophysical Research: Oceans 116(C4), C04025. https://doi.org/10.1029/2010JC006573.

Prokopchuk, I., Sentyabov, E., 2006. Diet of spring-spawning herring, mackerel and blue whiting related to Calanus finmarchicus distribution and hydrography in the Norwegian Sea. ICES Journal of Marine Science 63, 117–127.

Raj, R. P., Johannessen, J. A., Eldevik, T., Nilsen, J. E. O., Halo, I., 2016. Quantifying mesoscale eddies in the Lofoten Basin. Journal of Geophysical Research: Oceans 121(7), 4503–4521. Available at: https://doi.org/10.1002/2016JC011637.

Rossby, T., Ozhigin, V., Ivshin, V., Bacon, S., 2009a. An isopyncal view of the Nordic seas hydrography with focus on properties of the Lofoten Basin. Deep Sea Research Part I: Oceanographic Research Papers 56, 1955–1971.

Rossby, T., Prater, M. D., Soiland, H., 2009b. Pathways of inflow and dispersion of warm waters in the Nordic seas. Journal of Geophysical Research: Oceans 114(C4), C04011. Available at: https://doi.org/10.1029/2008JC005073.

Sentyabov, E. V., 2000. Kolebaniia teplovogo sostoianiia vod Norvezhskogo moria vo vtoroi polovine 1990-kh gg. i ikh vliianie na raspredelenie pelagicheskikh ryb [Fluctuations in the thermal state of the waters of the Norwegian Sea in the second half of the 1990s and their influence on the distribution of pelagic fishes]. Materialy otchet. sessii PINRO po itogam nauchno-issled. rabot v 1998–1999 gg. [Materials report. session of the PINRO on the results of the scientific-issled. works in 1998–1999], Ch. 1, Murmansk, Publishing house PINRO, 178–187. (In Russian)

Sentyabov, E. V., 2009. Mezhgodovye izmeneniia okeanograficheskikh uslovii v Norvezhskom more i ikh vliianie na raspredelenie pelagicheskikh ryb. Available at: http://www.dissercat.com/content/mezhgodovye izmeneniya-okeanograficheskikh-uslovii-v-norvezhskom-more-i-ikh-vliyanie-na-rasp (accessed: 03/12/2018). (In Russian)

Sentyabov, E. V., 2010. Zakonomernosti prostranstvennogo raspredeleniia termokhalinnykh kharakteristik na standartnykh razrezakh v iuzhnoi chasti Norvezhskogo moria [Regularities of spatial distribution of thermohaline characteristics on standard sections in the southern part of the Norwegian Sea]. Voprosy promyslovoi okeanologii [Issues of commercial oceanology] 7(1), 189–205. (In Russian)

Smith, W. H. F., Sandwell, D. T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334), 1956–1962.

Soiland, H., Chafik, L., Rossby, T., 2016. On the long?term stability of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans 121(7), 4438–4449. Available at: https://doi.org/10.1002/2016JC011726.

Volkov, D. L., Belonenko, T. V., Foux, V. R., 2013. Puzzling over the dynamics of the Lofoten Basin — a sub-Arctic hot spot of ocean variability. Geophysical Research Letters 40(4), 738–743. Available at: https://doi.org/10.1002/grl.50126.

Volkov, D. L., Kubryakov, A., Lumpkin, R., 2015. Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep Sea Research Part I: Oceanographic Research Papers 105, 142–157. Available at: https://doi.org/10.1016/j.dsr.2015.09.001.

Загрузки

Дополнительные файлы

Опубликован

28.02.2019

Как цитировать

Белоненко, Т. В. (2019) «Термохалинная структура Лофотенского вихря Норвежского моря на основе экспедиционных исследований и по данным гидродинамического моделирования», Вестник Санкт-Петербургского университета. Науки о Земле, 63(4), сс. 502–519. doi: 10.21638/spbu07.2018.406.

Выпуск

Раздел

Статьи