Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингера

Авторы

  • Александр Михайлович Федоров Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9; Научный фонд «Международный центр по окружающей среде и дистанционному зондированию им. Нансена», Российская Федерация, 199034, Санкт-Петербург, В.О., 14-я линия, 7, оф. 49-Н https://orcid.org/0000-0001-6857-1393
  • Игорь Львович Башмачников Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9; Научный фонд «Международный центр по окружающей среде и дистанционному зондированию им. Нансена», Российская Федерация, 199034, Санкт-Петербург, В.О., 14-я линия, 7, оф. 49-Н https://orcid.org/0000-0002-1257-4197
  • Татьяна Васильевна Белоненко Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9 https://orcid.org/0000-0003-4608-7781

DOI:

https://doi.org/10.21638/spbu07.2018.306

Аннотация

Получены пространственные распределения изменчивости глубин верхнего квазиоднородного слоя за 1950–2015 гг. по данным массива EN4. Показано, что глубины этого слоя в Гренландском море, достигающие 1500–2000 м, наблюдаются преимущественно в Гренландской котловине (73°–76° с. ш., 5° з. д.–1° в. д.), а также в области глубокой конвекции в бассейне Борея (77° с. ш., 1,0–2,5° з. д.). Это позволило уточнить размеры
таких областей, выделенных ранее по натурным данным и результатам гидродинамического моделирования. Показано, что разделяемые в предыдущих исследованиях области глубокой конвекции в морях Лабрадор (55–59° с. ш., 50–56° з. д.) и Ирмингера (57–60° с. ш., 35–43° з. д.) на самом деле представляют собой единую область, соединяясь в районе эпизодического возникновения глубокой конвекции (1000 м и более)
южнее Гренландии, между 56°–58° с. ш. Исследована внутригодовая изменчивость глубокой конвекции за весь период наблюдений 1950–2015 гг. Показано, что максимальные глубины ВКС во всей трех морях обычно фиксируются в период с декабря по май. При этом в морях Лабрадор и Ирмингера конвекция чаще всего наиболее интенсивно развивается в марте, а в Гренландском море — в апреле.

Ключевые слова:

Северная Атлантика, глубокая конвекция, массив данных EN4, глубина верхнего квазиоднородного слоя, моря Лабрадор, Ирмингера, Гренландское, Норвежское

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Белоненко, Т. В., Башмачников, И. Л., Колдунов, А. В., Куйбин, П. А., 2017. О вертикальной компоненте скорости в Лофотенском вихре Норвежского моря. Известия РАН. Физика атмосферы и океана 53(6), 728–737.

Белоненко, Т. В., Федоров, А. М., Башмачников, И. Л., Фукс, В. Р., 2018. Тренды интенсивности течений в Лабрадорском море и море Ирмингера по спутниковым альтиметрическим данным. Исследование Земли из космоса 2, 3–12.

Белоненко, Т. В., Волков, Д. Л., Ожигин, В. К., Норден, Ю. Е., 2014. Циркуляция вод в Лофотенской котловине Норвежского моря. Вестн. С.-Петербург. ун-та. Сер. 7. 2, 108–121.

Блошкина, Е. В., Иванов, В. В., 2016. Конвективные структуры в Норвежском и Гренландском морях по результатам моделирования с высоким пространственным разрешением. Труды Гидрометеорологического научно-исследовательского центра Российской Федерации 361, 146–168.

Гладышев, С. В., Гладышев, В. С., Фалина, А. С., Сарафанов, А. А., 2016. Зимняя конвекция в море Ирмингера в 2004–2014 гг. Океанология 56(3), 353–363. https://doi.org/10.7868/S0030157416030072.

Зеленько, А. А., Реснянский, Ю. Д., 2007. Глубокая конвекция в модели общей циркуляции океана: изменчивость на суточном, сезонном и межгодовом масштабах. Океанология 47(2), 211–224.

Иванов, В. В., Кораблев, А. А., 1995. Формирование и регенерация внутрипикноклинной линзы в Норвежском море. Метеорология и гидрология 9, 102–110.

Ковалевский Д. В., 2002. Анализ и моделирование глубокой конвекции в Гренландском море. https://vivaldi.nlr.ru/bd000120788/view#page.

Морецкий, В. Н., Попов, А. В., 1989. Водные массы Норвежского и Гренландского морей и основные типы вертикальной структуры вод, в: Николаев, Ю. В., Алексеев, Г. В. (под ред.), Структура и изменчивость крупномасштабных океанологических процессов и полей в Норвежской энергоактивной зоне. Гидрометиздат, Ленинград, 18–27.

Сарафанов, А. А., 2013. Циркуляция и термохалинные характеристики вод субарктической Атлантики: среднее состояние и изменения в масштабе десятилетий. http://www.dissercat.com/content/tsirkulyatsiya-i-termokhalinnye-kharakteristiki-vod-subarkticheskoi-atlantiki-srednee-sostoy.

Фалина, А. С., Сарафанов, А. А., Соков, А. В., 2007. К вопросу об обновлении Лабрадорской водной массы в бассейне Ирмингера. Океанология 47(4), 533–538.

Фалина, А. С., Сарафанов, А. А., Добролюбов, С. А., Запотылько, В. С., Гладышев, С. В., 2017. Конвекция и стратификация вод на севере Атлантического океана по данным измерений зимой 2013/14 гг. Вестник Московского ун-та. Сер. 5. География 4, 45–54.

Androsov, A., Rubino, A., Romeiser, R., Sein, D. V., 2005. Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models. Meteorologische Zeitschrift 14(6), 693–702. https://doi.org/10.1127/0941-2948/2005/0078.

Bashmachnikov, I., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Research I, 128, 1–27. http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Broecker, W. S., 1991. The Great Ocean Conveyor. Oceanography 4, 79–89.

Buckley, M. W., Marshall, J., 2016. Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review, Rev. Geophys. 54, 5–63. http://doi.org/10.1002/2015RG000493.

Budeus, G., Schneider, W., Krause, G., 1998. Winter convective events and bottom water warming in the Greenland Sea. Journal of Geophysical Research: Oceans 103(C9), 18513–18527.

Centurioni, L. R., Gould, W. J., 2004. Winter conditions in the Irminger Sea observed with profiling floats. Journal of Marine Research, 62, 313–336. https://doi.org/10.1357/0022240041446209.

de Jong, M. F., de Steur, L., 2016. Strong winter cooling of the Irminger Sea in winter 2014–15, exceptional deep convection, and the emergence of anomalously low SST. Geophysical Research Letters 43, 1717–1734. http://doi.org/10.1002/2016GL069596.

de Jong, M. F., van Aken, H. M., Våge, K., Pickart, R. S., 2012. Convective mixing in the central Irminger Sea: 2002–2010. Deep Sea Research I: Oceanographic Research Papers 63, 36–51.

Drijfhout, S., van Oldenborgh, G. J., Cimatoribus, A., 2012. Is a Decline of AMOC Causing the WarmingHole above the North Atlantic in Observed and Modeled Warming Patterns? Journal of Climate 25, 8373–8379. https://doi.org/10.1175/JCLI-D–12-00490.1.

Fischer, J., Schott, F., Visbeck, M., 1995. Greenland sea convection monitoring, in: Nordic Seas Symposium, 7–9 March 1995, Hamburg, 61–64.

Dukhovskoy, D. S., Chassignet, E. P., Hogan, P. J., Metzger, E. J., Posey, P., Smedstad, O. M., Stefanova, L. B., Wallcraft, A. J., 2016. GC23H-07: Current state and recent changes in the Arctic Ocean from the HYCOM-NCODA Global Ocean and sea ice prediction system. https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/160356.

Gelderloos, R., Katsman, C. A, Våge, K., 2013. Detecting Labrador Sea Water formation from space, Journal of Geophysical Research: Oceans 118, 2074–2086. http://doi.org/10.1002/jgrc.20176.

Good, S. A., Martin, M. J., Rayner, N. A., 2013. EN4: Quality controlled ocean temperature and salinity profiles and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans 118, 6704–6716. http://doi.org/10.1002/2013JC009067.

Greenland Sea Project: a venture toward improved understanding of the ocean’s role in climate? 1990. GSP Group (Eds.), Eos, Transactions American Geophysical Union 71(24), 750–756.

Holte, J., Talley, L. D., Gilson, J., Roemmich, D., 2017. An Argo mixed layer climatology and database, Geophysical Research Letters 44, 5618–5626. http://doi.org/10.1002/2017GL073426.

Jeansson, E., Olsen, A., Jutterström, S., 2017. Arctic Intermediate Water in the Nordic Seas, 1991–2009. Deep Sea Research I: Oceanographic Research Papers 128, 82–97.

Johannessen, O. M., Lygre, K., Eldevik, T., 2013. Convective Chimneys and Plumes in the Northern Greenland Sea, in: Drange, H., Dokken, T., Furevik, T., Gerdes, R., Berger, W. (Eds.), The Nordic Seas: An Integrated Perspective, Geophysical Monograph Series 158. Publ. American Geophysical Union Washington, D. C., 251–272. http://doi.org/10.1029/158GM17.

Johannessen, O. M., Sandven, S., Johannessen, J. A., 1991. Deep convection and deep water formation in the oceans. Elsevier Oceanography Series 57, 86–104.

Kara, A. B., Rochford, P. A., Hurlburt, H. E., 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research 108, 3079. http://doi.org/10.1029/2000JC000736.

Kawasaki, T., Hasumi, H., 2014. Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea. Ocean Modelling 75, 51–64.

Latarius, K., Quadfase, D., 2016. Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets. Deep Sea Research I: Oceanographic Research Papers 114, 23-42.

Latif, M., Boning, C., Willebrand, J., Biastoch, A., Dengg, J., Keenlyside, N., Schweckendiek, U., Madec, G., 2006. Is the thermohaline circulation changing? Journal of Climate 19(18), 4631–4637. https://doi.org/10.1175/JCLI3876.1.

Lavender, K. L., Davis, R. E., Owens, W. B., 2002. Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. Journal of Physical Oceanography 32, 511–526.

Lazier, J., Hendry, R., Clarke, A., Yashayaev, I., Rhines, P., 2002. Convection and restratification in the Labrador Sea, 1990–2000. Deep Sea Research I, 49(10), 1819–1835.

Lilly, J. M., Rhines, P. B., Visbeck, M., Davis, R., Lazier, J. R., Schott, F., Farmer, D., 1999. Observing deep convection in the Labrador Sea during winter 1994/95. Journal of Physical Oceanography 29, 2065–2098.

Marshall, J., Dobson, F., Moore, K., Rhines, P., Visbeck, M., d’Asaro, E., Bumke, K., Chang, S., Davis, R., Fischer, K., Garwood, R., Guest, P., Harcourt, R., Herbaut, C., Holt, T., Lazier, J., Legg, S., McWilliams, J., Pickart, R., Prater, M., Renfrew, I., Schott, F., Send, U., Smethie, W., 1998. The Labrador Sea Deep Convection Experiment. Bulletin of the American Meteorological Society 79, 2033–2058.

Marshall, J., Schott, F., 1999. Open‐ocean convection: Observations, theory, and models. Reviews of Geophysics 37(1), 1–64.

Moore, G. W. K., Våge, K., Pickart, R. S., Renfrew, I. A., 2015. Decreasing intensity of open-ocean convection in the Greenland and Iceland seas Nature Climate Change 5, 877–882. https://doi.org/1038/nclimate2688.

Nansen, F. Das Bodenwasser und die Abkühlung des Meeres, 1912. Internationale Revue der Gesamten Hydrobiologie and Hydrographie V, 1, 1–42.

Pérez, F. F., Mercier, H., Vazquez-Rodriguez, M., Lherminier, P., Velo, A., Pardo, P., Roson, G., Rios, A., 2013. Reconciling air-sea CO2 fluxes and anthropogenic CO2 budgets in a changing North Atlantic. Nature Geoscience 6, 146–152. https://doi.org/10.1038/ngeo1680.

Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K., Milliff, R. F., 2003a. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424, 6945, 152.

Pickart, R. S., Straneo, F., Moore, G. W. K., 2003b. Is Labrador Sea Water formed in the Irminger basin? Deep Sea Research I., 50, 23–52.

Pickart, R. S., Torres, D. J., Clarke, R. A., 2002. Hydrography of the Labrador Sea during active convection. Journal of Physical Oceanography 32, 428–457.

Piron, A., Thierry, V., Mercier, H., Caniaux, G., 2016. Argo float observations of basin-scale deep convection in the Irminger sea during winter 2011–2012. Deep Sea Research I, 109, 76–90.

Våge, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C. M., Petrie, B., Agnew, T. A., Wong, A., Ribergaard, M. H., 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience 2, 67–72. https://doi.org/10.1038/ngeo382.

Volkov, D. L., Belonenko, T. V., Foux, V. R., 2013. Puzzling over the dynamics of the Lofoten Basin — a sub-Arctic hot spot of ocean variability, Geophysical Research Letters 40, 4, 738–743. https://doi.org/10.1002/grl.50126.

Volkov, D. L., Kubryakov, A., Lumpkin, R., 2015. Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep Sea Research I 105, 142–157. https://doi.org/10.1016/j.dsr.2015.09.001.

Wadhams, P., Holfort, J., Hansen, E., Wilkinson J. P., 2002. A deep convective chimney in the winter Greenland sea. Geophysical Research Letters 29(10), 76-1–76-4. https://doi.org/10.1029/2001gl014306.

Yashayaev, I., 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography 73, 242–276.

Yashayaev, I., Loder, J. W., 2009. Enhanced production of Labrador Sea Water in 2008. Geophysical Research Letters 36(1), L01606. https://doi.org/10.1029/2008GL036162.

Yashayaev, I., Loder, J. W., 2016. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. Journal of Geophysical Research: Oceans 121, 8095–8114. http://doi.org/10.1002/2016JC012046.


References

Androsov, A., Rubino, A., Romeiser, R., Sein, D. V., 2005. Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models. Meteorologische Zeitschrift 14(6), 693–702. https://doi.org/10.1127/0941-2948/2005/0078.

Bashmachnikov, I., Sokolovskiy, M.A., Belonenko, T.V., Volkov, D.L., Isachsen, P.E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep Sea Research I, 128, 1–27. http://dx.doi.org/10.1016/j.dsr.2017.08.001.

Belonenko, T. V., Bashmachnikov, I. L., Koldunov, A. V., Kuibin, P. A., 2017. O vertikal’noi komponente skorosti v Lofotenskom vikhre Norvezhskogo moria [On the Vertical Velocity Component in the Mesoscale Lofoten Vortex of the Norwegian Sea]. Izvestiia RAN. Fizika atmosfery i okeana [Proceedings of the Russian Academy of Sciences. Atmosphere and ocean physics] 53(6), 641–649. (In Russian)

Belonenko, T.V., Fedorov, A. M., Bashmachnikov, I. L., Foux, V.R., 2018. Trendy intensivnosti techenii v Labradorskom more i more Irmingera po sputnikovym al’timetricheskim dannym [Trends in Cur- rent Intensity in the Labrador Sea and the Irminger Sea from Satellite Altimetry Data]. Issledovanie Zemli iz kosmosa [Earth exploration from space] 2, 3–12. (In Russian)

Belonenko, T.V., Volkov, D. L., Norden, Yu. E., Ozhigin, V. K., 2014. Tsirkuliatsiia vod v Lofotenskoi kotlovine Norvezhskogo moria [Water circulation in the Lofoten bason of the Norwegian sea]. Vestnik of Saint Petersburg University. Seriya 7 2, 108–121. (In Russian)

Bloshkina, E. V., Ivanov, V. V., 2016. Konvektivnye struktury v Norvezhskom i Grenlandskom moriakh po rezul’tatam modelirovaniia s vysokim prostranstvennym razresheniem [Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution]. Trudy Gidrometeorologicheskogo nauchno-issledovatel’skogo tsentra Rossiiskoi Federatsii [Proceedings of the Hydrometeorological Research Center of the Russian Federation] 361, 146–168. (In Russian)

Broecker, W. S., 1991. The Great Ocean Conveyor. Oceanography 4, 79–89.

Budeus, G., Schneider, W., Krause, G., 1998. Winter convective events and bottom water warming in the Greenland Sea. Journal of Geophysical Research: Oceans 103(C9), 18513–18527.

Centurioni, L. R., Gould, W. J., 2004. Winter conditions in the Irminger Sea observed with profiling floats. Journal of Marine Research, 62, 313–336. https://doi.org/10.1357/0022240041446209.

de Jong, M. F., de Steur, L., 2016. Strong winter cooling of the Irminger Sea in winter 2014–15, exceptional deep convection, and the emergence of anomalously low SST. Geophysical Research Letters 43, 1717–1734. http://doi.org/10.1002/2016GL069596.

Drijfhout, S., van Oldenborgh, G. J., Cimatoribus, A., 2012. Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns? Journal of Climate 25, 8373–8379. https://doi.org/10.1175/JCLI-D–12-00490.1.

Dukhovskoy, D. S., Chassignet, E.P., Hogan, P.J., Metzger, E.J., Posey, P., Smedstad, O.M., Stefanova, L.B., Wallcraft, A.J., 2016. Current State and Recent Changes in the Arctic Ocean from the HYCOMNCODA Global Ocean and Sea Ice Prediction System, GC23H-07, presented at 2016 Fall Meeting, AGU, San Francisco, Calif., 12–16 Dec.

Falina A. S., Sarafanov A. A., Dobrolyubov S. A., Zapotylko V. S., Gladyshev S.V., 2017. Konvektsiia i stratifikatsiia vod na severe Atlanticheskogo okeana po dannym izmerenii zimoi 2013/14 gg. [Water convection and stratification in the Northern Atlantic data of in situ measurements in winter 2013/14]. Vestnik Moskovskogo un-ta. Ser. 5. Geografiia [Herald of the Moscow University. Series Geography] 4, 45–54. (In Russian)

Falina, A. S., Sarafanov, A.A., Sokov, A.V., 2007. K voprosu ob obnovlenii Labradorskoi vodnoi massy v basseine Irmingera [On the renewal of Labrador sea water in the Irminger basin]. Okeanologiia [Oceanology] 47(4), 494–499. (In Russian)

Fischer, J., Schott, F., Visbeck, M., 1995. Greenland sea convection monitoring, in: Nordic Seas Symposium, 7–9 March 1995, Hamburg, 61–64.

Gelderloos, R., Katsman, C.A, Våge, K., 2013. Detecting Labrador Sea Water formation from space, J.Geophys. Res. Oceans 118, 2074–2086. http://doi.org/10.1002/jgrc.20176.

Gladyshev, S.V., Gladyshev, V. S., Falina, A. S., Sarafanov, A.A., 2016. Zimniaia konvektsiia v more Irmingera v 2004–2014 gg. [Winter Convection in the Irminger Sea in 2004–2014]. Okeanologiia [Okeanologia] 56(3), 353–363. https://doi.org/10.7868/S0030157416030072. (In Russian)

Good, S.A., Martin, M.J., Rayner, N.A., 2013. EN4: Quality controlled ocean temperature and salinity profiles and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans 118, 6704–6716. http://doi.org/10.1002/2013JC009067.

Greenland Sea Project: a venture toward improved understanding of the ocean’s role in climate? 1990. GSP Group (Eds.), Eos, Transactions American Geophysical Union 71(24), 750–756.

Holte, J., Talley, L.D., Gilson, J., Roemmich, D., 2017. An Argo mixed layer climatology and database, Geophysical Research Letters 44, 5618–5626. http://doi.org/10.1002/2017GL073426.

Jeansson, E., Olsen, A., Jutterström, S., 2017. Arctic Intermediate Water in the Nordic Seas, 1991–2009. Deep Sea Research I: Oceanographic Research Papers 128, 82–97.

Johannessen, O.M., Lygre, K., Eldevik, T., 2013. Convective Chimneys and Plumes in the Northern Greenland Sea, in: Drange, H., Dokken, T., Furevik, T., Gerdes, R., Berger, W.(Eds.), The Nordic Seas: An Integrated Perspective, Geophysical Monograph Series 158. Publ. American Geophysical Union Washington, D.C., 251–272. http://doi.org/10.1029/158GM17.

Ivanov, V.V., Korablev, A.A., 1995. Formirovanie i regeneratsiia vnutripiknoklinnoi linzy v Norvezhskom more [Formation and regeneration of the intrapycnocline lens in the Norwegian Sea]. Meteorologiia i gidrologiia [Meteorology and Hydrology] 9, 102–110. (In Russian)

Johannessen, O.M., Sandven, S., Johannessen, J.A., 1991. Deep convection and deep water formation in the oceans. Elsevier Oceanography Series 57, 86–104.

Kara, A.B., Rochford, P.A., Hurlburt, H.E., 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research 108, 3079. http://doi.org/10.1029/2000JC000736.

Kawasaki, T., Hasumi, H., 2014. Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea. Ocean Modelling 75, 51–64.

Kovalevsky D.V., 2002. Analiz i modelirovanie glubokoi konvektsii v Grenlandskom more [Analysis and modeling of deep convection in the Greenland Sea]. https://vivaldi.nlr.ru/bd000120788/view#page. (In Russian)

Latarius, K., Quadfase, D., 2016. Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets. Deep Sea Research I: Oceanographic Research Papers 114, 23–42.

Latif, M., Boning, C., Willebrand, J., Biastoch, A., Dengg, J., Keenlyside, N., Schweckendiek, U., Madec, G., 2006. Is the thermohaline circulation changing? Journal of Climate 19(18), 4631–4637. https://doi.org/10.1175/JCLI3876.1.

Lavender, K.L., Davis, R.E., Owens, W.B., 2002. Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. Journal of Physical Oceanography 32, 511–526.

Lazier, J, Hendry, R., Clarke, A., Yashayaev, I., Rhines, P., 2002. Convection and restratification in the Labrador Sea, 1990–2000. Deep Sea Research I, 49(10), 1819–1835.

Lilly, J.M., Rhines, P.B., Visbeck, M., Davis, R., Lazier, J.R., Schott, F., Farmer, D., 1999. Observing deep convection in the Labrador Sea during winter 1994/95. Journal of Physical Oceanography 29, 2065–2098.

Marshall, J., Dobson, F., Moore, K., Rhines, P., Visbeck, M., d’Asaro, E., Bumke, K., Chang, S., Davis, R., Fischer, K., Garwood, R., Guest, P., Harcourt, R., Herbaut, C., Holt, T., Lazier, J., Legg, S., McWilliams, J., Pickart, R., Prater, M., Renfrew, I., Schott, F., Send, U., Smethie, W., 1998. The Labrador Sea Deep Convection Experiment. Bulletin of the American Meteorological Society 79, 2033–2058.

Marshall, J., Schott, F., 1999. Open‐ocean convection: Observations, theory, and models. Reviews of Geophysics37(1), 1–64.

Moore, G.W.K., Våge, K., Pickart, R. S., Renfrew, I.A., 2015. Decreasing intensity of open-ocean convection in the Greenland and Iceland seas Nature Climate Change 5, 877–882. https://doi.org/1038/nclimate2688.

Moretsky, V.N., Popov, A. V., 1989. Vodnye massy Norvezhskogo i Grenlandskogo morei i osnovnye tipy vertikal’noi struktury vod [Water masses of the Norwegian and Greenland seas and the main types of vertical water structure], in: Nikolaev, Y. V., Alekseev, G. V.(Eds.), Struktura i izmenchivost’ krupnomasshtabnykh okeanologicheskikh protsessov i polei v Norvezhskoi energoaktivnoi zone [Structure and variability of large-scale oceanological processes and fields in the Norwegian energy-active zone]. Gidrometizdat, Leningrad, 18–27. (In Russian)

Nansen, F. Das Bodenwasser und die Abkühlung des Meeres, 1912. Internationale Revue der Gesamten Hydrobiologie and Hydrographie V, 1, 1–42.

Pérez, F.F., Mercier, H., Vazquez-Rodriguez, M., Lherminier, P., Velo, A., Pardo, P., Roson, G., Rios, A., 2013. Reconciling air-sea CO2 fluxes and anthropogenic CO2 budgets in a changing North Atlantic. Nature Geoscience 6. 146–152. https://doi.org/10.1038/ngeo1680.

Pickart, R. S., Spall, M. A., Ribergaard, M.H., Moore, G. W. K., Milliff, R. F., 2003a. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424, 6945, 152.

Pickart, R. S., Straneo, F., Moore, G. W. K., 2003b. Is Labrador Sea Water formed in the Irminger basin? Deep Sea Research I., 50, 23–52.

Pickart, R. S., Torres, D. J., Clarke, R. A., 2002. Hydrography of the Labrador Sea during active convection. Journal of Physical Oceanography 32, 428–457.

Piron, A., Thierry, V., Mercier, H., Caniaux, G., 2016. Argo float observations of basin-scale deep convection in the Irminger sea during winter 2011–2012. Deep Sea Research I, 109, 76–90.

Sarafanov, A.A., 2013. Tsirkuliatsiia i termokhalinnye kharakteristiki vod subarkticheskoi Atlantiki: srednee sostoianie i izmeneniia v masshtabe desiatiletii [Circulation and thermochaline characteristics of the waters of the subarctic Atlantic: the average state and changes in the scale of decades]. http://www.dissercat.com/content/tsirkulyatsiya-i-termokhalinnye-kharakteristiki-vod-subarkticheskoi-atlantiki-srednee-sostoy. (In Russian)

Våge, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C.M., Petrie, B., Agnew, T. A., Wong, A., Ribergaard, M. H., 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience 2, 67–72. https://doi.org/10.1038/ngeo382.

Volkov, D. L., Belonenko, T. V., Foux, V. R., 2013. Puzzling over the dynamics of the Lofoten Basin — a subArctic hot spot of ocean variability, Geophysical Research Letters 40, 4, 738–743. https://doi.org/10.1002/grl.50126.

Volkov, D. L., Kubryakov, A., Lumpkin, R., 2015. Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep Sea Research I, 105, 142–157. https://doi.org/10.1016/j.dsr.2015.09.001.

Wadhams, P., Holfort, J., Hansen, E., Wilkinson J. P., 2002. A deep convective chimney in the winter Greenland sea. Geophysical Research Letters 29(10), 76-1–76-4. https://doi.org/10.1029/2001gl014306.

Yashayaev, I., 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography 73, 242–276.

Yashayaev, I., Loder, J. W., 2009. Enhanced production of Labrador Sea Water in 2008. Geophysical Research Letters 36(1), L01606. https://doi.org/10.1029/2008GL036162.

Yashayaev, I., Loder, J. W., 2016. Recurrent replenishment of Labrador Sea Water and associated decadal-scale variability. Journal of Geophysical Research: Oceans 121, 8095–8114. http://doi.org/10.1002/2016JC012046.

Zelen’ko, A. A., Resnyanskiy, Yu. D., 2007. Glubokaia konvektsiia v modeli obshchei tsirkuliatsii okeana: izmenchivost’ na sutochnom, sezonnom i mezhgodovom masshtabakh [Deep convection in the model of general ocean circulation: variability at daily, seasonal and interannual scales]. Okeanologiia [Oceanology] 47(2), 211–224. (In Russian)

Загрузки

Опубликован

15.11.2018

Как цитировать

Федоров, А. М., Башмачников, И. Л. и Белоненко, Т. В. (2018) «Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингера», Вестник Санкт-Петербургского университета. Науки о Земле, 63(3), сс. 345–362. doi: 10.21638/spbu07.2018.306.

Выпуск

Раздел

Статьи

Наиболее читаемые статьи этого автора (авторов)