Межгодовая изменчивость теплосодержания и содержания пресной воды в куполе холодных вод моря Лабрадор

Авторы

  • Диана Андреевна Яковлева Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9
  • Игорь Львович Башмачников Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9; Научный фонд «Международный центр по окружающей среде и дистанционному зондированию им. Нансена», Российская Федерация, 199034, Санкт-Петербург, 14-я линия В. О., 7 https://orcid.org/0000-0002-1257-4197

DOI:

https://doi.org/10.21638/spbu07.2019.108

Аннотация

В работе исследуется межгодовая изменчивость теплосодержания и содержания пресной воды в море Лабрадор на основе массива ARMOR-3D (1993-2016 гг.), в котором скомбинированы натурные и спутниковые наблюдения. Расчеты показали значимые тенденции к увеличению теплосодержания и уменьшению содержания пресной воды в верхнем 500-метровом слое. С глубиной угловой коэффициент линии тренда характеристик уменьшается, что говорит о приповерхностном происхождении процессов, формирующих долгосрочную изменчивость изучаемых величин. В межгодовых масштабах теплосодержание и содержание пресной воды имеют отрицательную корреляцию при удаленных трендах, которая возможна и за счет усиления теплообмена с атмосферой, и за счет изменения интенсивности адвекции субтропических и/ или полярных вод в море Лабрадор. В межгодовой изменчивости теплосодержания и содержания пресной воды выделены доминирующие циклы продолжительностью 2-4 года и 5-8 лет. Показана связь выделенной изменчивости термохалинных характеристик с индексом Северо-Атлантической осцилляции (NAOI). В частности, для 2- и 5-8-летних циклов получена высокая когерентность индекса с теплосодержанием. На 2-летних циклах выявлено запаздывание колебаний NAOI на четверть периода относительно колебаний теплосодержания, что интерпретируется как наличие обратного влияния температуры поверхностных вод моря Лабрадор на фазу/ интенсивность Северо-Атлантической осцилляции. На 5-8-летних периодах также наблюдается когерентность колебаний теплосодержания/содержания пресной воды с колебаниями индекса Атлантической мультидекадной осцилляции (АМОI), характеризующего изменчивость средней температуры воды Северной Атлантики. AMOI практически синфазно меняется с теплосодержанием. После 2000-х гг. стала проявляться связь с АМОI и на 2-4-летних циклах, причем колебания AMOI несколько опережают колебания теплосодержания.

Ключевые слова:

море Лабрадор, теплосодержание, содержание пресной воды, Северо-Атлантическая осцилляция, Атлантическая мультидекадная осцилляция

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Астафьева, Н. М., 1996. Вейвлет-анализ: основы теории и примеры применения. Успехи физических наук, 166(11), 1145–1170.

Бышев, В. И., Нейман, В. Г., Романов, Ю. А., Серых, И. В., 2011. О фазовой изменчивости некоторых характеристик современного климата в регионе Северной Атлантики. Доклады Академии Наук 438(6). 817–822

Фалина, А. С., Сарафанов, А. А., Добролюбов, С. А., Запотылько, В. С., Гладышев, С. В., 2017. Конвекция и стратификация вод на севере Атлантического океана по данным измерений зимой 2013/14 гг. Вестник Моск. ун-та 5(4), 45–54.

Федоров, А. М., Башмачников И. Л., Белоненко Т. В., 2018. Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингера, Вестник Санкт-Петербургского университета. Науки о Земле 63(3), 354–362.

Buckley, M. W., Marshall, J., 2016. Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review. Reviews of Geophysics 54, 5–63.

Barrier, N., Deshayes, J., Treguier, A. M., Cassou, C., 2015. Heat budget in the North Atlantic subpolar gyre: Impacts of atmospheric weather regimes on the 1995 warming event. Progress in Oceanography 130, 75–90.

Bashmachnikov, I., Belonenko, T. V., Koldunov, A. V., 2013. Intra-annual and interannual non-stationary cycles of chlorophyll concentration in the Northeast Atlantic. Remote Sensing of Environment 137, 55–68.

Bingyi, W., Jia, W., 2002. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Advances in Atmospheric Sciences 19(2), 297–320.

Bjork, G., Gustafsson, B. G., Stigebrandt, A., 2001. Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy. Polar Research 20(2), 161–168.

Brambilla, E., Talley, L. D., Robbins, P. E., 2008. Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. Journal of Geophysical Research 113(C4). URL: https://doi.org/10.1029/2006JC004063.

Chanut, J., Barnier, B., Large, W., Debreu, L., Penduff, T., Molines, J. M., Mathiot, P., 2008. Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. Journal of Physical Oceanography38 (8), 1617–1643.

Curry, R. G., McCartney, M. S., 1996. Labrador sea water carries northern climate signal south. Oceanus-Woods Hole Mass.39, 24–28.

Drinkwater, K. F., Miles, M., Medhaug, I., Ottera, O. H., Kristiansen, T., Sundby, S., Gao, Y., 2014. The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60 N. Journal of Marine Systems 133, 117–130.

Emery, W. J., Thomson, R. E., 2001. Data Analysis Methods in Physical Oceanography. Elsevier. Amsterdam. 1–634.

Gnatuik, N., Vihma, T., Bobylev, L., 2018. Inter-seasonal teleconnections between Earth surface temperature and near-surface air temperature. POLAR-2018 (A SCAR IASC Conference), 15–26.05.2018, Davos, Switzerland.

Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D. Woodgate, R., 2015. Arctic freshwater export: status, mechanisms, and prospects. Global and Planetary Change 125, 13–35.

Holte, J., Straneo, F., 2017. Seasonal overturning of the Labrador Sea as observed by Argo floats. Journal of Physical Oceanography 47(10), 2531–2543.

Hurrell, J. W., Deser, C., 2010. North Atlantic climate variability: the role of the North Atlantic Oscillation. Journal of Marine Systems 79(3–4), 231–244.

Jenkins, W. J., Smethie, W. M., Boyle, E. A., Cutter, G. A., 2015. Water mass analysis for the US GEOTRACES (GA03) North Atlantic sections. Deep Sea Research II 116, 6–20.

Jevrejeva, S., Moore, J. C., Grinsted, A., 2003. Influence of the Arctic Oscillation and El Nino? Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. Journal of Geophysical Research 108(D21). URL: https://doi.org/10.1029/2003JD003417.

Khatiwala, S., Schlosser, P., Visbeck, M., 2002. Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations. Journal of Physical Oceanography 32(2), 666–686.

Kumar, P., Foufoula?Georgiou, E., 1997. Wavelet analysis for geophysical applications. Reviews of Geophysics 35(4), 385–412.

Larnicol, G., Guinehut, S., Rio, M. H., Drevillon, M., Faugere, Y., Nicolas, G., 2006. The global observed ocean products of the French Mercator project. Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, 13–18 March 2006, Venice, Italy.

McCartney, M. S., Talley, L. D., 1982. The subpolar mode water of the North Atlantic Ocean. Journal of Physical Oceanography 12(11), 1169–1188.

Myers, P. G., Josey, S. A., Wheler, B., Kulan, N., 2007. Interdecadal variability in Labrador Sea precipitation minus evaporation and salinity. Progress in Oceanography 73(3–4), 341–357.

Nardelli, B., Guinehut, S., Pascual, A., Drillet, Y., Ruiz, S., Mulet, S., 2012. Towards high resolution mapping of 3-D mesoscale dynamics from observations. Ocean Science 8(5), 885–901

Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., Aagaard, K., 2006. Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313(5790), 1061–1066.

Pozo-Vazqueza, D., Esteban-Parra, M. J., Rodrigo, F. S., Castro-Diez, Y., 2000. An analysis of the variability of the North Atlantic Oscillation in the time and the frequency domains. International Journal of Climatology 20, 1675–1692.

Proshutinsky, A., Dukhovskoy, D., Timmermans, M. L., Krishfield, R., Bamber, J. L., 2015. Arctic circulation regimes. Philosophical Transactions of Royal Society A 373(2052), 20140160.

Rhein, M., Kieke, D., Huttl-Kabus, S., Roessler, A., Mertens, C., Meissner, R., Klein, B., Boning, C. W., Yashayaev, I., 2011. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Research II 58(17), 1819–1832.

Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele, M., Moritz, R., Meredith, M., Lee, C. M., 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research 111(C11). URL: https://doi.org/10.1029/2005JC003424

Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., Koltermann, K. P., 2004. Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep Sea Research I 51(8), 1033–1056.

Yashayaev, I., 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography 73, 242–276.

Yashayaev, I., Clarke, A., 2008. Evolution of North Atlantic water masses inferred from Labrador Sea salinity series. Oceanography 21(1), 30–45.

Yashayaev, I., Seidov, D., Demirov, E., 2015. A new collective view of oceanography of the Arctic and North Atlantic basins. Progress in Oceanography132, 1–21.


References

Astafieva, N. M., 1996. Veivlet-analiz: osnovy teorii i primery primeneniia [Wavelet analysis: basic theory and some applications]. Uspekhi fizicheskikh nauk 166(11), 1145–1170. (In Russian)

Barrier, N., Deshayes, J., Treguier, A. M., Cassou, C., 2015. Heat budget in the North Atlantic subpolar gyre: Impacts of atmospheric weather regimes on the 1995 warming event. Progress in Oceanography 130, 75–90.

Bashmachnikov, I., Belonenko, T. V., Koldunov, A. V., 2013. Intra-annual and interannual non-stationary cycles of chlorophyll concentration in the Northeast Atlantic. Remote Sensing of Environment 137, 55–68.

Bingyi, W., Jia, W., 2002. Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Advances in Atmospheric Sciences 19(2), 297–320.

Bjork, G., Gustafsson, B. G., Stigebrandt, A., 2001. Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy. Polar Research 20(2), 161–168.

Brambilla, E., Talley, L. D., Robbins, P. E., 2008. Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation. Journal of Geophysical Research 113(C4). URL: https://doi.org/10.1029/2006JC004063.

Buckley, M. W., Marshall, J., 2016. Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review. Reviews of Geophysics 54, 5–63.

Buongiorno Nardelli, B., Guinehut, S., Pascual, A., Drillet, Y., Ruiz, S., Mulet, S., 2012. Towards high resolution mapping of 3-D mesoscale dynamics from observations. Ocean Science 8(5), 885–901.

Byshev, V. I., Neiman, V. G., Romanov, Y. A., Serykh, I. V., 2011. O fazovoi izmenchivosti nekotorykh kharakteristik sovremennogo klimata v regione Severnoi Atlantiki. [Phase variability of some characteristics of the present-day climate in the northern Atlantic region]. Doklady Earth Sciences 438(6), 817–822. (In Russian)

Chanut, J., Barnier, B., Large, W., Debreu, L., Penduff, T., Molines, J. M., Mathiot, P., 2008. Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. Journal of Physical Oceanography 38(8), 1617–1643.

Curry, R. G., McCartney, M. S., 1996. Labrador sea water carries northern climate signal south. Oceanus-Woods Hole Mass.39, 24–28.

Drinkwater, K. F., Miles, M., Medhaug, I., Ottera, O. H., Kristiansen, T., Sundby, S., Gao, Y., 2014. The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60 N. Journal of Marine Systems 133, 117–130.

Emery, W. J., Thomson, R. E., 2001. Data Analysis Methods in Physical Oceanography. Elsevier, Amsterdam, 1–634.

Falina, A. S., Sarafanov, A. A., Dobrolyubov, S. A., Zapotylko, V. S., Gladyshev, S. V., 2017. Konvektsiia i stratifikatsiia vod na severe Atlanticheskogo okeana po dannym izmerenii zimoi 2013/14 gg. [Water convection and stratification in the Northern Atlantic data of in situ measurements in winter 2013/14].Vestnik Mosk. un-ta [Vestnik of Moscow University]4, 45–54. (In Russian)

Fedorov, A. M., Bashmachnikov, I. L., Belonenko, T. V., 2018. Lokalizatsiia oblastei glubokoi konvektsii v moriakh Severo-Evropeiskogo basseina, Labrador i Irmingera [Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea]. Vestnik Sankt-Peterb. un-ta. Nauki o Zemle [Vestnik of Saint Petersburg University. Earth Sciences]. 63(3). 354–362. (In Russian) URL: https://doi.org/10.21638/spbu07.2018.306.

Gnatuik, N., Vihma, T., Bobylev, L., 2018. Inter-seasonal teleconnections between Earth surface temperature and near-surface air temperature. POLAR-2018 (A SCAR IASC Conference), 15–26.05.2018, Davos, Switzerland.

Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D. Woodgate, R., 2015. Arctic freshwater export: status, mechanisms, and prospects. Global and Planetary Change 125, 13–35.

Holte, J., Straneo, F., 2017. Seasonal overturning of the Labrador Sea as observed by Argo floats. Journal of Physical Oceanography 47(10), 2531–2543.

Hurrell, J. W., Deser, C., 2010. North Atlantic climate variability: the role of the North Atlantic Oscillation. Journal of Marine Systems 79(3–4), 231–244.

Jenkins, W. J., Smethie, W. M., Boyle, E. A., Cutter, G. A., 2015. Water mass analysis for the US GEOTRACES (GA03) North Atlantic sections. Deep Sea Research II 116, 6–20.

Jevrejeva, S., Moore, J. C., Grinsted, A., 2003. Influence of the Arctic Oscillation and El Nino?Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. Journal of Geophysical Research 108(D21). URL: https://doi.org/10.1029/2003JD003417.

Khatiwala, S., Schlosser, P., Visbeck, M., 2002. Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations. Journal of Physical Oceanography 32(2), 666–686.

Kumar, P., Foufoula?Georgiou, E., 1997. Wavelet analysis for geophysical applications. Reviews of Geophysics 35(4), 385–412.

Larnicol, G., Guinehut, S., Rio, M. H., Drevillon, M., Faugere, Y., Nicolas, G., 2006. The global observed ocean products of the French Mercator project. Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, 13–18 March 2006. Venice, Italy.

McCartney, M. S., Talley, L. D., 1982. The subpolar mode water of the North Atlantic Ocean. Journal of Physical Oceanography 12(11), 1169–1188.

Myers, P. G., Josey, S. A., Wheler, B., Kulan, N., 2007. Interdecadal variability in Labrador Sea precipitation minus evaporation and salinity. Progress in Oceanography 73(3–4), 341–357.

Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., Aagaard, K., 2006. Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313(5790), 1061–1066.

Pozo-Vazqueza, D., Esteban-Parra, M. J., Rodrigo, F. S., Castro-Diez, Y., 2000. An analysis of the variability of the North Atlantic Oscillation in the time and the frequency domains. International Journal of Climatology 20, 1675–1692.

Proshutinsky, A., Dukhovskoy, D., Timmermans, M. L., Krishfield, R., Bamber, J. L., 2015. Arctic circulation regimes. Philosophical Transactions of Royal Society A 373(2052), 20140160.

Rhein, M., Kieke, D., Huttl-Kabus, S., Roessler, A., Mertens, C., Meissner, R., Klein, B., Boning, C. W., Yashayaev, I., 2011. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Research II 58(17), 1819–1832.

Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., Steele, M., Moritz, R., Meredith, M., Lee, C. M., 2006. The large-scale freshwater cycle of the Arctic. Journal of Geophysical Research 111(C11). URL: https://doi.org/10.1029/2005JC003424.

Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., Koltermann, K. P., 2004. Deep water changes at the western boundary of the subpolar North Atlantic during 1996 to 2001. Deep Sea Research I 51(8), 1033–1056.

Yashayaev, I., 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Progress in Oceanography 73, 242–276.

Yashayaev, I., Clarke, A., 2008. Evolution of North Atlantic water masses inferred from Labrador Sea salinity series. Oceanography 21(1), 30–45.

Yashayaev, I., Seidov, D., Demirov, E., 2015. A new collective view of oceanography of the Arctic and North Atlantic basins. Progress in Oceanography132, 1–21.

Загрузки

Опубликован

19.05.2019

Как цитировать

Яковлева, Д. А. и Башмачников, И. Л. (2019) «Межгодовая изменчивость теплосодержания и содержания пресной воды в куполе холодных вод моря Лабрадор», Вестник Санкт-Петербургского университета. Науки о Земле, 64(1), сс. 136–158. doi: 10.21638/spbu07.2019.108.

Выпуск

Раздел

Статьи