Forecasting changes in river water resources of Russian Federation based on CMIP5 runoff data

Authors

  • Михаил Владимирович Георгиевский St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Олег Федорович Голованов State Research Center “Arctic and Antarctic Research Institute”, 38 Bering str., St. Petersburg, Russia, 199397

DOI:

https://doi.org/10.21638/spbu07.2019.203

Abstract

The article is devoted to the analysis of river runoff data provided by the latest generation of the Coupled Atmosphere-Ocean General Circulation Models (AOGCMs) in the framework of the CMIP5 project. The main aim of this research is to forecast the probable changes in river water resources of the main rivers of the Russian Federation. At the first stage of investigation, a comprehensive analysis of the river runoff computational models and the quality of the initial AOGCMs information were carried out. This analysis was performed in several steps. At first, the average long-term model river runoff for the base period of 1981–2000 was compared with the average long-term values of the observed discharge for the seven largest rivers of the Russian Federation (Volga, Pechora, Northern Dvina, Ob, Lena, Yenisei and Amur). In addition, the spatial distribution of the river runoff throughout the territory of Russia provided by the AOGCMs was analyzed. Then, the adequacy (negative or unrealistic runoff values) of the simulated future runoff changes for each of the forecast scenarios was checked. If any of the verification tests revealed incorrect model data, the model was excluded from further research. As a result, 24 AOGCMs were selected. At the second stage of research, a model ensemble was formed based on the 24 selected models for the implementation of forecasting estimates. The forecasting estimates were carried out for two forecast periods (2021-2040 and 2041-2060) in relation to the 1981-2000 period. Calculations were performed for two (RCP4.5 and RCP8.5) forecast scenarios. As a result, future changes in river water resources of the 34 largest rivers of the Russian Federation were obtained and analyzed, as well as maps of future changes in annual runoff depth over the territory of Russia were constructed.

Keywords:

forecasting changes, river water resources, coupled atmosphere-ocean general circulation models, CMIP5 runoff data

Downloads

Download data is not yet available.
 

References

Литература

Георгиевский, М. В., Голованов, О. Ф., 2015. Оценка вероятных изменений стока в бассейне реки Амур на перспективу до 2020 и 2050 годов на основе данных моделей общей циркуляции атмосферы и океана, в: Экстремальные паводки в бассейне Амура: гидрологические аспекты / Георгиевский, В. Ю. (под ред.). Сб. работ по гидрологии. ФГБУ «ГГИ», Санкт-Петербург, 152–168.

Катцов, В. М., Говоркова, В. А., 2013. Ожидаемые изменения приземной температуры воздуха, осадков и годового стока на территории России в ХХI-м веке: результаты расчетов с помощью ансамбля глобальных климатических моделей (CMIP5). Труды ГГО 569, 75–97.

Школьник, И. М., Мелешко, В. П., Кароль, И. Л., Киселев, А. А., Надежина, Е. Д., Говоркова В. А., Павлова, Т. В., 2014. Ожидаемые изменения климата на территории Российской Федерации в XXI веке. Труды ГГО 575, 65–118.

Фролов, А. В., 2014. Вклад гидрометеорологической науки в развитие водохозяйственного комплекса страны. 19–21 ноября 2013 г., в: VII Всероссийский гидрологический съезд. Пленарные доклады. Санкт-Петербург, Гидрометоиздат, 7–25.

Beven, K. J., Kirkby, M. J., 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43–69.

Meehl, G. A., Bony, S., 2011. Introduction to CMIP5. WCRP coupled model intercomparison project-phase 5. CLIVAR exchanges 16(2), 4–5.

Riahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74(7), 887–935.

Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An Overview of CMIP5 and the Experiment Design. The Bulletin of the American Meteorological Society 93, 485–498.

Wayne, G. P., 2013. The Beginner’s Guide to Representative Concentration Pathways. https://skepticalscience.com/docs/RCP_Guide.pdf.


References

Beven, K. J., Kirkby, M. J., 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24, 43–69.

Frolov, A. V., 2014. Vklad gidrometeorologicheskoi nauki v razvitie vodokhoziaistvennogo kompleksa strany. 19–21 noiabria 2013 g. VII Vserossiiskii gidrologicheskii s”ezd. Plenarnye doklady [The contribution of hydrometeorological science to the development of the country’s water management complex. VII All-Russian Hydrological Congress. Theses of plenary reports. November 19–21, 2013]. St. Petersburg, 7–25. (In Russian).

Georgievsky, M. V., Golovanov, O. F., 2015. Otsenka veroiatnykh izmenenii stoka v basseine reki Amur na perspektivu do 2020 i 2050 godov na osnove dannykh modelei obshchei tsirkuliatsii atmosfery i okeana [Forecasting changes in river runoff in the Amur River basin for the future up to 2020 and 2050 based on data of general atmospheric and ocean circulation models], in: Ekstremal’nye povodki v basseine Amura: gidrologicheskie aspekty / Georgievsky, V. Yu. (ed.). Sb. rabot po gidrologii [Extreme floods in the Amur River basin: hydrological aspects. Collected papers on hydrology]. FGBU “GGI” Publ., St. Petersburg, 152–168. (In Russian).

Kattsov, V. M., Govorkova, V. A., 2013. Ozhidaemye izmeneniia prizemnoi temperatury vozdukha, osadkov i godovogo stoka na territorii Rossii v XXI-m veke: rezul’taty raschetov s pomoshch’iu ansamblia global’nykh klimaticheskikh modelei (CMIP5) [Expected changes in surface air temperature, precipitation and annual runoff in Russia in the 21st century: results of calculations using an ensemble of global climate models (CMIP5)]. Trudy GGO 569, 75–97. (In Russian).

Meehl, G. A., Bony, S., 2011. Introduction to CMIP5. WCRP coupled model intercomparison projectphase 5. CLIVAR exchanges 16(2), 4–5.

Riahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74(7), 887–935.

Shkolnik, I. M., Meleshko, V. P., Karol I. L., Kiselev A. A., Nadyozhina E. D., Govorkova V. A., Pavlova T. V., 2014. Ozhidaemye izmeneniia klimata na territorii Rossiiskoi Federatsii v XXI veke [Expected climate change in the Russian Federation in the 21st century]. Trudy GGO 575, 65–118. (In Russian).

Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An Overview of CMIP5 and the Experiment Design. The Bulletin of the American Meteorological Society 93, 485–498.

Wayne, G. P., 2013. The Beginner’s Guide to Representative Concentration Pathways. https://skepticalscience.com/docs/RCP_Guide.pdf.

Published

2019-06-01

How to Cite

Георгиевский, М. В. and Голованов, О. Ф. (2019) “Forecasting changes in river water resources of Russian Federation based on CMIP5 runoff data”, Vestnik of Saint Petersburg University. Earth Sciences, 64(2), pp. 206–218. doi: 10.21638/spbu07.2019.203.

Issue

Section

Articles