Peculiarities of variability of the thermohaline structure and dynamics of the Baltic Sea waters during the appearance and distribution of the Major Baltic Inflow in December 2014

Authors

  • Evgenii A. Zakharchuk Saint-Petersburg University, 13B Universitetskaya Emb., St Petersburg 199034, Russia https://orcid.org/0000-0001-6079-5739
  • Mikhail V. Vinogradov Saint-Petersburg University, 13B Universitetskaya Emb., St Petersburg 199034, Russia; N.N.Zubov’s State Oceanographic Institute, Roshydromet, 6, Kropotkinskiy Lane, 119034, Moscow, Russian Federation https://orcid.org/0009-0003-3744-8204
  • Vladimir N. Sukhachev Saint-Petersburg University, 13B Universitetskaya Emb., St Petersburg 199034, Russia; N.N.Zubov’s State Oceanographic Institute, Roshydromet, 6, Kropotkinskiy Lane, 119034, Moscow, Russian Federation https://orcid.org/0000-0003-4821-4342
  • Natalia A. Tikhonova Saint-Petersburg University, 13B Universitetskaya Emb., St Petersburg 199034, Russia; N.N.Zubov’s State Oceanographic Institute, Roshydromet, 6, Kropotkinskiy Lane, 119034, Moscow, Russian Federation https://orcid.org/0000-0002-4546-4920
  • Vladimir S. Travkin Saint-Petersburg University, 13B Universitetskaya Emb., St Petersburg 199034, Russia; N.N.Zubov’s State Oceanographic Institute, Roshydromet, 6, Kropotkinskiy Lane, 119034, Moscow, Russian Federation
  • Mikhail Iu. Uleysky V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Science, 43, Baltiyskaya Street, 690041, Vladivostok, Russia https://orcid.org/0000-0001-6499-1470

DOI:

https://doi.org/10.21638/spbu07.2024.407

Abstract

Based on the data of the Baltic Sea Physics Analysis and Forecast (BSPAF) regional reanalysis of hydrophysical fields and instrumental measurements of sea level and salinity, the peculiarities of the variability of oceanographic processes in the Baltic Sea during the spread of the Major Baltic Inflow (MBI) of saline North Sea waters, which occurred in December 2014, are investigated. The maximum sea level difference between the Kattegat and the southwestern Baltic during the Major Baltic Inflow in December 2014 is investigated. It is shown that the 2014 MBI cannot be identified as barotropic, since slopes caused by the heterogeneity of the seawater density field make a significant contribution to the observed sea-level slopes in the Danish Straits during the MBI. Vertical profiles of water density and currents during the MBI demonstrate the preservation of stratification in the Danish Straits and the presence of a unidirectional flow directed from the Kattegat to the Baltic, with velocities at the surface of 1.0-1.2 m/s and at the bottom of 0.10-0.30 m/s. Significant vertical gradients of the flow velocity are due to the influence of the baroclinic component, the velocities of which reach 0.2 – 0.6 m/s. that 243.7 km3 of Kattegat waters passed into the southwestern Baltic during the entire period of the BBZ, which is consistent with earlier calculations made using other methods. Analysis of changes in the time of near-bottom salinity at three sections in the Baltic Sea shows that the transformed waters of the MBI reached the Gotland Basin in early April 2015 and then continued to spread to the north of the open Baltic, where they turned south and reached the western Gotland basin in December 2015.

Keywords:

Baltic Sea, Danish Straits, Major Baltic Inflow, regional reanalysis of hydrophysical fields, water exchange, currents, water salinity, sea level, stratification

Downloads

Download data is not yet available.
 

References

Антонов, А. Е. (1978). Современные тенденции изменений гидролого-гидрохимических условий Балтийского моря. Труды ГОИН, 147, 117–129.

Захарчук, Е. А., Литина, Е. Н., Клеванцов, Ю. П., Сухачёв, В. Н., Тихонова, Н. А. (2017a). Нестационарность гидрометеорологических процессов Балтийского моря в условиях меняющегося климата. Труды ГОИН, 218, 6–62.

Захарчук, Е. А., Литина, Е. Н., Сухачёв, В. Н., Тихонова, Н. А. (2023). Стерические колебания уровня Балтийского моря. Russian Journal of Earth Sciences, 23 (4), ES4014. https://doi.org/10.2205/2023ES000846

Захарчук, Е. А., Сухачёв, В. Н., Тихонова, Н. А. (2014). О влиянии межгодовой изменчивости характеристик атмосферных циклонов на частоту опасных подъемов уровня моря на востоке Финского залива. Проблемы Арктики и Антарктики, 3 (101), 27–36.

Захарчук, Е. А., Сухачёв, В. Н., Тихонова, Н. А. (2017b). Механизмы опасных подъемов уровня моря в Финском заливе. СПб.: Петербург — XXI век, 39–50.

Иванова, Т. А., ред. (1989). Проблемы исследования и математического моделирования экосистемы Балтийского моря. Вып. 4. Основные тенденции эволюции экосистемы. Л.: Гидрометеоиздат, 262.

Литина, Е. Н., Захарчук, Е. А., Тихонова, Н. А. (2020). Динамика гипоксийных зон в Балтийском море на рубеже XX и XXI веков. Водные ресурсы, 47, 322–329. https://doi.org/10.31857/S0321059620030098

Первунина, Т. П., Жукова, К. В., Лундберг, О. Р. (1955). Из опыта гармонического анализа суточных наблюдений над течениями. Труды ГОИН, 30, 226–241.

Тареев, Б. А. (1974). Динамика бароклиных возмущений в океане. М.: Изд-во МГУ, 187.

Терзиев, Ф. С., Рожков, В. А., Смирнова, А. И., ред. (1992). Проект «Моря СССР». Гидрометеорология и гидрохимия морей СССР. Т. III. Балтийское море. Вып. I Гидрометеорологические условия. СПб.: Гидрометеоиздат, 447.

Тихонова, Н. А. и Сухачёв, В. Н. (2017). Волновая интерпретация больших Балтийских затоков. Метеорология и гидрология, 4, 67–69.

Budyansky, M. V., Udalov, A. A., Lebedeva, M. A., Belonenko, T. V. (2024). Assessment of Pollution of the Waters in the South Kuril Fishing Zone of Russia by Radioactive Waters from the Fukushima-1 NPP Based on Lagrangian Modeling. Doklady Earth Sciences, 515, 458–467. https://doi.org/10.1134/S1028334X2360305X

Dickson, R. R. (1973). The prediction of major Baltic inflows. Deutsche hydrographische Zeitschrift, 26, 97–105. https://doi.org/10.1007/BF02232597

Feistel, R., Nausch, G., Heene, T., Piechura, J., Hagen, E. (2004). Evidence for a warm water inflow into the baltic proper in summer 2003. Oceanologia, 46 (4), 581–598.

Fischer, H. and Matthäus, W. (1996). The importance of the Drogden Sill in the Sound for major Baltic inflows. Journal of Marine Systems, 9 (3-4), 137–157. https://doi.org/10.1016/S0924-7963(96)00046-2

Hersbach, H., Bell, B., Berrisfo, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803

Hordoir, R., Axell, L., Löptien, U., Dietze, H., Kuznetsov, I. (2015). Influence of sea level rise on the dynamics of salt inflows in the Baltic Sea. Journal of Geophysical Research: Oceans, 120 (10), 6653–6668. https://doi.org/10.1002/2014JC010642

Hordoir, R. и Meier, H. E. M. (2010). Freshwater fluxes in the Baltic Sea: A model study. Journal Geophys Res Oceans, 115 (C8). https://doi.org/10.1029/2009JC005604

Hughes, S. L., Holliday, N. P., Gaillard, F. (2012). Variability in the ICES/NAFO region between 1950 and 2009: Observations from the ICES Report on Ocean Climate. ICES Journal of Marine Science, 69 (5), 706–719. https://doi.org/10.1093/icesjms/fss044

Jackett, D. R. и Mcdougall, T. J. (1995). Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability. Journal of Atmospheric and Oceanic Technology, 12 (2), 381–389. https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2

Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H. H., Hüssy, K., Liblik, T., Meier, H. E. M., Lips, U., Bukanova, T. (2022). Salinity dynamics of the Baltic Sea. Earth System Dynamics, 13 (1), 373–392. https://doi.org/10.5194/esd-13-373-2022

Leppäranta, M. и Myrberg, K. (2009). Physical Oceanography of the Baltic Sea. Springer Science & Business Media.

Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J., Viktorsson, L. (2018). Propagation of impact of the recent Major Baltic Inflows from the Eastern Gotland basin to the Gulf of Finland. Front Mar Science, 5, 222. https://doi.org/10.3389/fmars.2018.00222

Lintrup, M. J. и Jakobsen, F. (1999). The importance of Oresund and the Drogden sill for Baltic inflow. Journal of Marine Systems, 18 (4), 345–354. https://doi.org/10.1016/S0924-7963(98)00018-9

Liu, Y., Axell, L., Jandt, S., Lorkowski, I., Lindenthal, A., Verjovkina, S., Schwichtenberg, F. (2019). Baltic Sea Production Centre BALTICSEA_REANALYSIS_PHY_003_011. COPERNICUS Marine Environment Monitoring Service.

Madsen, K. S. и Højerslev, N. K. (2009). Long-term temperature and salinity records from the Baltic Sea transition zone. Boreal Environment Research, 14, 125–131.

Markus Meier, H. E. (2007). Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Science, 74 (4), 610–627. https://doi.org/10.1016/j.ecss.2007.05.019

Matthäus, W. (2006). The history of investigation of salt water inflows into the Baltic Sea — from the early beginning to recent results. Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS. No. 65. Warnemünde: Institut für Ostseeforschung. http://dx.doi.org/10.12754/msr-2006-0065

Matthäus, W. и Franck, H. (1989). Is the positive salinity anomaly in the Kattegat deep water a necessary precondition for major Baltic inflows? Gerlands Beiträge zur Geophysik, 9, 332–343.

Matthäus, W. и Franck, H. (1992). Characteristics of major Baltic inflows: A statistical analysis. Continental Shelf Research, 12, 1375–1400. https://doi.org/10.1016/0278-4343(92)90060-W

Mattsson, J., Håkansson, B., Blenckner, T. (2017). Dynamics of the Baltic Sea's internal dynamics and influences on ecosystem state. Hydrobiologia, 806 (1), 11–32. https://doi.org/10.1007/s10750-017-3144-x

Meier, H. E. M., Döscher, R., Broman, B., Piechura, J. (2004). The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: A model study. Oceanologia, 46 (4), 557–579.

Mohrholz, V. (2018). Major Baltic inflow statistics — Revised. Front Mar Science, 5, 384. https://doi.org/10.3389/fmars.2018.00384

Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U. (2015). Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation. Journal of Marine Systems, 148, 152–166. https://doi.org/10.1016/j.jmarsys.2015.03.005

Morozov, E. G., Frey, D. I., Salyuk, P. A., Budyansky, M. V. (2024). Amazon River Plume in the Western Tropical North Atlantic. Journal of Marine Science and Engineering, 12 (6), 851. https://doi.org/10.3390/jmse12060851

Nerger, L., Hiller, W., Schröter, J. (2005). A comparison of error subspace Kalman filters. Tellus A: Dynamic Meteorology and Oceanography, 57 (5), 715–735. https://doi.org/10.1111/j.1600-0870.2005.00141.x

Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., Haapala, J. (2017). Sea-ice evaluation of NEMO-Nordic 1.0: A NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea. Geoscientific Model Development, 10 (8), 3105–3123. https://doi.org/10.5194/gmd-10-3105-2017

Prants, S. V., Uleysky, M. Y., Budyansky, M. V. (2017). Lagrangian oceanography: Large-scale transport and mixing in the ocean. Berlin; New York: Springer, 273. https://doi.org/10.1007/978-3-319-53022-2

Prants, S. V. (2015). Backward-in-time methods to simulate large-scale transport and mixing in the ocean. Physica Scripta, 90 (7), 074054. http://dx.doi.org/10.1088/0031-8949/90/7/074054

Prants, S. V., Budyansky, M. V., Uleysky, M. Y., Kulik, V. V. (2021). Lagrangian fronts and saury catch locations in the Northwestern Pacific in 2004–2019. Journal of Marine Systems, 222, 103605–103605. https://doi.org/10.1016/j.jmarsys.2021.103605

Quante, M., Colijn, F., Bakker, J. P., Härdtle, W., Heinrich, H., Lefebvre, C., Nöhren, I., Olesen, J. E., Pohlmann, T., Sterr, H., Sündermann, J., Tölle, M. H. (2016). North Sea Region Climate Change Assessment. Springer Nature. https://doi.org/10.1007/978-3-319-39745-0

Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H. U., Mohrholz, V., Nausch, G., Umlauf, L., Wieczorek, G. (2009). Vertical mixing in the Baltic Sea and consequences for eutrophication — A review. Progress in Oceanography, 82 (1), 47–80. https://doi.org/10.1016/j.pocean.2007.10.004

Samuelsson, M., Stigebrandt, A. (1996). Main characteristics of the long-term sea level variability in the Baltic Sea. Tellus A: Dynamic Meteorology and Oceanography, 48 (5), 672–683. https://doi.org/10.3402/tellusa.v48i5.12165

Sellschopp, J., Arneborg, L., Knoll, M., Fiekas, V., Gerdes, F., Burchard, H., Ulrich Lass, H., Mohrholz, V., Umlauf, L. (2006). Direct observations of a medium-intensity inflow into the Baltic Sea. Continental Shelf Research, 26 (19), 2393–2414. https://doi.org/10.1016/j.csr.2006.07.004

Wyrtki, K. (1953). Die Dynamik der Wasserbewegungen in Fehmarnbelt. Kieler Meeresforschungen, 9 (2), 155–170.

Published

2024-12-02

How to Cite

Zakharchuk, E. A. (2024) “Peculiarities of variability of the thermohaline structure and dynamics of the Baltic Sea waters during the appearance and distribution of the Major Baltic Inflow in December 2014”, Vestnik of Saint Petersburg University. Earth Sciences, 69(4). doi: 10.21638/spbu07.2024.407.

Issue

Section

Articles