Аутигенез карбонатов в отложениях газогидратоносной структуры ХАОС (Охотское море)

  • Елизавета Александровна Логвина Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана им. академика И. С. Грамберга» (ФГБУ «ВНИИОкеангеология»), Российская Федерация, 190121, Санкт-Петербург, Английский пр., 1 https://orcid.org/0000-0002-1233-3051
  • Алексей Алексеевич Крылов Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана им. академика И. С. Грамберга» (ФГБУ «ВНИИОкеангеология»), Российская Федерация, 190121, Санкт-Петербург, Английский пр., 1; Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9; Федеральное государственное бюджетное учреждение науки Лимнологический институт Сибирского отделения РАН «ЛИН СО РАН», Российская Федерация, 664033, Иркутск, ул. Улан-Баторская, 3, а/я 278 https://orcid.org/0000-0001-5539-9758
  • Татьяна Валерьевна Матвеева Федеральное государственное бюджетное учреждение «Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана им. академика И. С. Грамберга» (ФГБУ «ВНИИОкеангеология»), Российская Федерация, 190121, Санкт-Петербург, Английский пр., 1 https://orcid.org/0000-0003-2133-3069
  • Федор Евгеньевич Максимов Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9
  • Владислав Юрьевич Кузнецов Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9; Российский государственный педагогический университет им. А. И. Герцена, Российская Федерация, 191186, Санкт-Петербург, набережная реки Мойки, 48

Аннотация

В работе представлены результаты исследований аутигенных карбонатов, отобранных в приповерхностных осадках газогидратоносной структуры ХАОС, расположенной на западном склоне котловины Дерюгина в Охотском море. Карбонатные образования находились на разных стадиях формирования; их наиболее распространенными морфологическими формами были конкреции. Микроскопические исследования показали, что конкреции образованы пелитоморфным карбонатом, цементирующим терригенную глинисто-обломочную матрицу и органический детрит. По данным рентгенофазового анализа доминирующим минералом, слагающим конкреции, является криптокристаллический высокомагнезиальный кальцит (14,2–16,9 мол % Mg). По результатам геохимического моделирования выделены интервалы осадочного разреза, где в настоящее время существуют благоприятные условия для образования основных карбонатных минералов (арагонита, кальцита и доломита). Практически на всей площади структуры формирование карбонатов происходит на глубинах более 1 м, вплоть до 5 м. В то время как в центральной части структуры (ст. LV31-27GC) формирование карбонатов возможно также и в верхней части осадочного разреза от 0 до 155 см. На основе балансовых расчетов содержания изотопов δ13С в конкрециях оценен вклад основных источников углерода, участвующих в их формировании. Этими источниками оказались органическое вещество и микробный метан в соотношении 67,5:32,5. Конвертация углекислоты в бикарбонат-ион происходит в условиях раннего диагенеза благодаря взаимодействию флюида с алюмосиликатами. Расчеты изотопного состава поровых вод (основного источника кислорода карбонатов) и палеотемператур свидетельствуют о кристаллизации карбонатов при невысоких (близких к 0°С) температурах. На основании 230Th/U-датирования карбонатов был определен возраст изученного очага разгрузки ~3,5 тыс. лет. Установлено, что структура ХАОС является одной из наиболее «молодых» на северо-восточном склоне о. Сахалин.

Ключевые слова:

аутигенные карбонаты, аутигенез, очаг разгрузки флюидов, газовые гидраты, метан, углеводороды, изотопный анализ, датировки, гидрохимическое моделирование

Скачивания

Данные скачивания пока недоступны.
 

Литература

Астахова, Н. В. (2007). Аутигенные образования в позднекайнозойских отложениях окраинных морей Востока Азии. Владивосток: Дальнаука.

Астахова, Н. В., Липкина, М. И., Мельниченко, Ю. И. (1987). Гидротермальная баритовая минерализация во впадине Дерюгина Охотского моря. Докл. АН СССР. Т. 295, 1, 212–215.

Астахова, Н. В., Нарнов, Г. Л., Якушева, И. Н. (1990). Карбонатно-баритовая минерализация во впадине Дерюгина (Охотское море). Тихоокеанская геология, 3, 37–42.

Блохин, М. Г., Ивин, В. В., Михайлик, П. Е., Михайлик, Е. В., Иванова, Ю. М., Еловский, Е. В., Зарубина, Н. В., Иванов, Д. С., Остапенко, Д. С. (2018). Генезис баритов впадины Дерюгина (Охотское море). Вестник Камчатской региональной ассоциации «Учебно-научный центр». Серия. Науки о Земле, 1, 51–59.

Деркачев, А. Н., Борман, Г., Грайнерт, Й., Можеровский, А. В. (2000). Аутигенная карбонатная и баритовая минерализация в осадках впадины Дерюгина (Охотское море). Литология и полезн. ископаемые, 6, 568–585.

Деркачев, А. Н., Николаева, Н. А. (2007). Особенности аутигенного минералогенеза в осадках Охотского моря. Дальневосточные моря России. Кн. 3. В. А. Акуличев и Р. Г. Кулинич, под ред. М.: Наука, 223–239.

Деркачев, А. Н., Обжиров, А. И., Борман, Г., Грейнерт, Й., Зюсс, Э. (2002). Аутигенное минералообразование на участках проявления холодных газово-флюидных эманаций на дне Охотского моря. Условия образования донных осадков и связанных с ними полезных ископаемых. Владивосток: Дальнаука, 47–60.

Крылов, А. А., Логвина, Е. А. (2012). Механизмы формирования аутигенных карбонатов в условиях субаквального диагенеза. Материалы Всероссийского литологического совещания, посвященного 100-летию со дня рождения Л. Б. Рухина (Санкт-Петербург, 25–29 сентября 2012). Т. 2. 59–60.

Крылов, А. А., Логвина, Е. А., Матвеева, Т. В., Прасолов, Э. М., Сапега, В. Ф., Демидова, А. Л., Парамонова, М. С., Чудакова, Д. В. (2015). Икаит (CaCO3∙6H2O) в донных отложениях моря Лаптевых и роль анаэробного окисления метана в процессе его формирования. ЗРМО, 4, 61–75.

Ларсен, Г. и Чилингар, Дж. под ред. (1971). Диагенез и катагенез осадочных образований. Серия. Науки о земле. Т. 36. Перевод с англ., под ред. Н. Б. Вассоевича М.: Мир.

Леин, А. Ю., Гальченко, В. Ф., Покровский, Б. Г., Шабаева, И. Ю., Черткова, Л. В., Миллер, Ю. М. (1989). Морские карбонатные конкреции как результат процессов микробного окисления газгидратного метана в Охотском море. Геохимия, 10, 1396–1406.

Логвина, Е. А. (2009). Аутигенное карбонатообразование в газогидратообразующих очагах разгрузки флюидов. Диссертация… канд. геол.-минерал. наук.

Максимов, Ф. Е., Шарин, В. В., Кузнецов, В. Ю., Окунев, А. С., Григорьев, В. А., Петров, А. Ю. (2016). Уран-ториевое датирование высоких морских террас архипелага Шпицберген. Вестник СПбГУ. Серия 7, 2, 54–64. https://doi.org/10.21638/11701/spbu07.2016.205

Прасолов, Э. М., Лохов, К. И., Логвина, Е. А. Мазуренко, Л. Л., Соловьев, В. А., Блинова, В. Н., Иванов, М. К. (2006). Происхождение карбонатов в районах современной подводной разгрузки флюидов по данным изотопной геохимии (Черное и Охотское моря, Кадисский залив). Региональная геология и металлогения. СПб.: ВСЕГЕИ, 28, 158–173.

Соловьев, В. А., Гинсбург, Г. Д., Дуглас, В. К., Кренстон, Р., Лоренсон, Т., Алексеев, И. А., Баранова, Н. С., Иванова, Г. А., Казазаев, В. П., Лобков, В. А., Маширов, Ю. Г., Наторхин, М. И., Обжиров, А. И., Титаев, Б. Ф. (1994). Газовые гидраты Охотского моря. Отечественная геология, 2, 10–17.

Япаскурт, О. В. (2008). Генетическая минералогия и стадиальный анализ процессов осадочного породо- и рудообразования: учеб. пособие. М.: ЭСЛАН.

Alperin, M. J., Reeburgh, W. S. and Whiticar, M. J. (1988). Carbon and hydrogen isotope fractionation from anaerobic methane oxidation. Global Biogeochemical Cycles, 2, 279–288.

Baranov, B., Werner, R., Chichaev, A. Obzhirov, A., Salyuk, A. and Tararin, I. (2004). Bathymetry and Parasound investigations. Cruise Report SO178-KOMEX. Mass exchange processes and balances in the Okhotsk Sea, in Dullo, W.-Chr., Biebow, N. Georgeleit, K. (eds.), GEOMAR Report. Kiel, 10–19.

Blair, N.E. and Aller, R.C. (1995). Anaerobic methane oxidation on the Amazon shelf. Geochim Cosmochim Acta, 59, 3707–3715.

Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U. and Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623–626. https://doi.org/10.1038/35036572

Deines P., Langmuir, D. and Harmon, R.S. (1974). Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta, 38, 1147–1164.

Derkachev, A. N., Nikolaeva, N. A., Mozherovskiy, A. V., Baranov, B. V., Barinov, N. N., Minami, H. and Hachikubo, A., Shoji, H. (2015). Manifestation of carbonate-barite mineralization around methane seeps in the sea of Okhotsk (the Western slope of the Kuril basin). Oceanology, 55(3), 390–399. https://doi.org/ 10.1134/S0001437015030029

Derkachev, A. N., Nikolaeva, N. A., Tsoy, I. B., Mozherovskiy A. V., Baranov B. V., Barinov N. N., Krylov A. A., Kuznetsov A. B., Minami H. and Hachikubo A. (2021). A long-lived center of gas-fluid emanations on the Kuril basin western slope (Sea of Okhotsk). Lithology and Mineral Resources, 56(4), 309–332. https://doi.org/10.1134/S0024490221040027

Ginsburg, G. D. and Soloviev, V. A. (1998). Submarine gas hydrates. SPb.: VNIIOkengeologiya.

Goldsmith, J. R. and Graf, D. L. (1958). Relation between lattice constants and composition of the Ca-Mg carbonates. American mineralogist, 43, 84–101.

Greinert, J., Bohrmann, G. and Suess, E. (2001). Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution, and origin of authigenic lithologies. Natural Gas Hydrates: Occurrence, Distribution and Detection. Eds. C. K. Paull, W. P. Dillon. Geophys. Monogr. Ser. Washington: AGU, 124, 99–113. https://doi.org/10.1029/GM124p0099

Greinert, J., Bollwerk, S. M., Derkachev, A., Bohrmann, G. and Suess, E. (2002). Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth and Planetary Science Letters. 203, 165–180. https://doi.org/10.1016/S0012-821X(02)00830-0

Hathaway, J. C. and Degens, E. I. (1968). Methane-derived marine carbonates of Pleistocene age. Science, 165, 690–692.

Hoefs, J. (2021). Stable isotope geochemistry. Springer-Verlag, 9th edition. https://doi.org/10.1007/978-3-030-77692-3

Hoffman, P. F. and Lamothe, K. G. (2019). Seawater-buffered diagenesis, destruction of carbon isotope excursions, and the composition of DIC in Neoproterozoic oceans. PNAS, 116(38), 18874–18879. https://doi.org/10.1073/pnas.1909570116

Jiménez-López, C., Romanek, C. S. and Caballero, E. (2006). Carbon isotope fractionation in synthetic magnesian calcite. Geochimica et Cosmochimica Acta, 70, 1163–1171. https://doi.org/10.1016/j.gca.2005.11.005

Jin, Y. K. and Onboard Ship Scientific Party (2017). ARA07C Cruise Report: 2016 Korea-Russia-Germany East Siberian Sea Research Program, Korea Polar Research Institute, 108 p.

Jin, Y. K., Gladysh, V., Mazurenko, L. and Smirnov, B. (2006). Seismoacoustic profiling. Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea (CHAOS-II Project). Report of R/V “Akademik M.A. Lavrentyev” Cruise 36, Vladivostok – StPetersburg, 17–25.

Knittel, K. and Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol, 63, 311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130

Kolesnik, O. N., Kolesnik, A. N. and Pokrovskii, B. G. (2014) A find of an authigenic methane-derived carbonate in the Chukchi sea. Doklady Earth Sciences, 458(1), 1168–1170. https://doi.org/10.1134/S1028334X1409030X

Krylov, A, Khlystov, O, Zemskaya, T., Minami, H. Hachikubo, A. Nunokawa, Yu., Kida, M., Shoji, H., Naudts, L. Poort, J. and Pogodaeva, T. V. (2008a) First discovery and formation process of authigenic siderite from gas hydratebearing mud volcanoes in fresh water: Lake Baikal, Eastern Siberia. Geophys Res Lett 35, L05405. https://doi.org/10.1029/2007GL032917

Krylov, A., Mazurenko, L., Hachikubo, A., Minami, H., Logvina, E., Nikolaeva, N., Kida, M., Nunokawa, Y., Nishio, S., Obzhirov, A., Jin, Y., Poort, J. and Shoji, H. (2007). Sediments and authigenic carbonates related to gas-hydrates in the Sea of Okhotsk: first results from the CHAOS 2005 expedition. Gas Hydrates for the Future Energy and Environment, Proc. of the 2-nd Int. Workshop on Gas Hydrate Studies and Other Related Topics — for the Future Energy and Environment Considerations, in Tsunemoto, H., Shoji, H. and Yamashita, S. (eds.) Kitami Institute of Technology. 49–55.

Krylov, A., Logvina, E., Hachikubo, A., Minami, H., Nunokawa, Yu., Shoji, H., Mazurenko, L., Matveeva, T., Obzhirov, A. and Jin, Y. K. (2008b). Authigenic carbonates related to gas seepage structures in the Sea of Okhotsk (NE offshore Sakhalin): results from the CHAOS project. 6th Int. Conf. on Gas Hydrates (ICGH 2008). https://doi.org/10.14288/1.0041015

Krylov, A. A., Khlystov, O. M., Hachikubo, A., Minami, H., Zemskaya, T. I., Logvina, E. A., Lomakina, A.V. and Semenov, P.B. (2020). The reconstruction of the mechanisms of problematic authigenic carbonates formation in diagenetic and catagenetic environments associated with the generation/oxidation of hydrocarbons. Limnology and Freshwater Biology, 4 (SI:7VBC), 928–930. https://doi.org/10.31951/2658-3518-2020-A-4-928

Lein, A. Yu. (2004). Authigenic carbonate formation in the ocean. Lithology and Mineral Resources, 39(1), 1–30. https://doi.org/10.1023/B:LIMI.0000010767.52720.8f

Logvina, E. A., Prasolov, E. M., Arslanov, Kh. A., Matveeva, T. V., Chernov, S. B. and Maksimov, F. E. (2012). Correction of the measured radiocarbon age of carbonates from the discharge sites of hydrocarbon fluids. Geochemistry Int., 50 (11), 958–963. https://doi.org/10.1134/S0016702912110079

Maekawa, T. (2004). Experimental study on isotopic fractionation in water during gas hydrate formation. Geochem. J, 38(2), 129–138. https://doi.org/10.2343/geochemj.38.129

Marlow, J. J., Steele, J. A., Ziebis, W., Thurber, A., Levin, L. and Orphan, V. (2014). Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nature Communications, 5 (10), 5094. https://doi.org/10.1038/ncomms6094

Matveeva, T., Soloviev, V., Shoji, H. and Obzhirov, A. (eds.). (2005). Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea (CHAOS Project Leg I and Leg II). Report of R/V “Akademik M.A. Lavrentyev” Cruise 31 and 32, SPb.: VNIIOkeangeologia.

Mazurenko, L. L. and Soloviev, V. A. (2003). Worldwide distribution of deep-water fluid venting and potential occurrences of gas hydrate accumulations. Geo-Marine Letters, 23, 162–176. https://doi.org/10.1007/s00367-003-0146-x

Mazurenko, L. L., Matveeva, T. V., Prasolov, E., Shoji, M. H., Obzhirov, A. I., Jin, Y. K., Poort, J., Logvina, E. A., Minami, H., Sakagami, H., Hachikubo, A., Salomatin, A. S., Salyuk, A. N. and Prilepskiy, E. B. (2009). Scientific Team Gas hydrate-forming fluids on the NE Sakhalin slope, Sea of Okhotsk, in D. Long, M.A. Lovell, J.G. Rees & C.A. Rochelle (eds) Sediment-Hosted Gas Hydrates. New Insights on Natural and Synthetic Systems. The Geological Society, London, Special Publication, 319. 51–72. https://doi.org/10.1144/SP319.5

Obzhirov, A. I., Astakhov, A. S. and Astakhova, N. V. (2000). Genesis and conditions of formation of authigenous carbonates in the quarternary sedimentary cover in the region of the Sakhalin-Deryugin gas anomaly (sea of Okhotsk). Oceanology, 40(2), 258–266.

Parkhurst, D. L. and Appelo, C. A. J., (2013). Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43, 497, available at: http://pubs.usgs.gov/tm/06/a43/ (Accessed 14.05.2021)

Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L. and Reitner J. (1999). Cold seep deposits of Beauvoisin (Oxfordian southeastern France) and Marmorito (Miocene northern Italy): microbially induced authigenic carbonates. Int Journal Earth Sciences, 88, 60–75. https://doi.org/10.23689/fidgeo-846

Peckmann, J., Birgel, D. and Kiel, S. (2009). Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology, 37, 847–850. https://doi.org/10.1130/G25658A.1

Pletnev, S. P., Romanova, A., Yonghua, Wu., Annin, V., Utkin, I. V. and Vereshchagina O. (2019). Holocene methane emissions in the southwestern sea of Okhotsk: evidence from carbon isotopes in benthic foraminifera shells. Doklady Earth Sciences, 488(1), 1081–1083. https://doi.org/10.1134/S1028334X19090058

Schubert, C. J., Nürnberg, D., Scheele, N., Pauer, F. and Kriews, M. (1997). 13C isotope depletion in ikaite crystal: evidence for methane release from the Siberian shelves? Geo-Marine Letters, 17, 169–174.

Shoji, H., Jin, Y. K., Baranov, B., Nikolaeva, N. and Obzhirov, A. (eds.) Operation Report of Sakhalin slope gas hydrate Project ӀӀ (2013). RV Akademik M. A. Lavrentyev Cruise 62. New Energy Resources Res. Center, Kitami Inst. of Tech., 111.

Shoji, H., Soloviev, V., Matveeva, T., Mazurenko, L., Minami, H., Hachikubo, A., Sakagami, H., Hyakutake, K., Kaulio, V., Gladysch, V., Logvina, E., Obzhirov, A., Baranov, B., Khlystov, O., Biebow, Nicole, Poort, J., Jin, Y. K. and Kim, Y. (2005). Hydrate-bearing structures in the Sea of Okhotsk. Eos Trans. AGU, 86(2), 13–24. https://doi.org/10.1029/2005EO020001

Takeuchi, R., Machiyama, H. and Matsumoto, R. (2001). The formation process of the cold seep carbonates at the Kuroshima Knoll. JAMSTEC J. Deep Sea Res., 19, 61–75.

Tarutani, T., Clayton, R. N. and Mayeda, T. K. (1969). The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta, 33, 987–996.

Valentine, D. L. and Reeburgh, W. S. (2000). New perspectives on anaerobic methane oxidation. Environ Microbiol, 2(5), 477–484. https://doi.org/10.1046/j.1462-2920.2000.00135.x

Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., Greinert, J., Kutterolf and S., Eisenhauer, A. (2008). Silicate weathering in anoxic marine sediments. Geochim Cosmochim Acta, 72, 3067–3090. https://doi.org/10.1016/j.gca.2008.03.026

Whiticar M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol., 161, 291–314.

Yao, H., Panieri, G., Lehmann, M. F., Himmler, T. and Niemann, H. (2021). Biomarker and isotopic composition of seep carbonates record environmental conditions in two Arctic methane seeps. Front Earth Sci., 8:570742. https://doi.org/10.3389/feart.2020.570742

Опубликован
2022-01-10
Как цитировать
Логвина, Е. А., Крылов, А. А., Матвеева, Т. В., Максимов, Ф. Е. и Кузнецов, В. Ю. (2022) «Аутигенез карбонатов в отложениях газогидратоносной структуры ХАОС (Охотское море)», Вестник Санкт-Петербургского университета. Науки о Земле, 67(1). doi: 10.21638/spbu07.2022.103.
Раздел
Статьи

Наиболее читаемые статьи этого автора (авторов)