Суперхондритовые Nb/Ta и Zr/Hf отношения в перидотитах и эклогитах субконтинентальной литосферной мантии: данные мантийных ксенолитов

Авторы

  • Лариса Петровна Никитина Институт геологии и геохронологии докембрия РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, 2
  • Мирьям Самуиловна Бабушкина Институт геологии и геохронологии докембрия РАН, Россия, 199034, Санкт-Петербург, наб. Макарова, 2

DOI:

https://doi.org/10.21638/spbu07.2019.208

Аннотация

На основе авторских и литературных данных о концентрации Nb, Ta, Zr и Hf и отношений Nb/Ta и Zr/Hf в ксенолитах эклогитов и перидотитов из субконтинентальной литосферной мантии (СКЛМ), подстилающей кратоны, установлено: (1) ксенолиты перидотитов из мантии Каапваальского, Североамериканского и Сибирского кратонов (Т от 900-1000 до 1350-1400 °C, Р от 1.5-2.0 до 5-6 ГПа, DlogfO2FMQ от -5 до -3) обогащены Nb и Ta относительно хондрита CI и примитивной мантии PM, тогда как перидотиты из мантии Северокитайского кратона по их содержанию близки к CI или обеднены по сравнению с ним; (2) несмотря на значительные колебания, суперхондритовые значения Nb/Ta (>17,4) и Zr/Hf (>36,0) свойственны большинству перидотитовых ксенолитов из мантии кратонов, за исключением Cеверокитайского, где они близки или ниже CI; (3) в ксенолитах эклогитов из мантии кратонов   Кассаи, Мен, Слейв (Т от 900-1000 до 1400-1500°C, Р от 3 до 5-6 ГПа) содержание Nb на 2-3 порядка превышает таковые в CI и PM, отношение Nb/Ta колеблется от хондритовых до суперхондритовых значений. Зоны СКЛМ, соответствующие области стабильности алмаза, являются одним из резервуаров в BSE с суперхондритовыми Nb/Ta и Zr/Hf значениями и зарождение таких зон, возможно, происходило еще на этапе кристаллизации «магматического океана». Таким образом, СКЛМ неоднородна по степени фракционирования Nb относительно Ta и Zr относительно Hf, и конвекция, охватывающая, как предполагается многими, всю мантию, не привела к полной ее гомогенизации в отношении HFSE, несмотря на длительную историю Земли. При обсуждении проблемы дисбаланса масс Nb и Ta и «недостающего» Nb в силикатной Земле необходимо учитывать, что часть его находится в СКЛМ, в зонах стабильности алмаза.

Ключевые слова:

субконтинентальная литосферная мантия, перидотиты, эклогиты, HFSE, фракционирование Nb, Ta, Zr и Hf

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература/References

Ayers, J. C., 1998. Trace element modeling of aqueous fluid — peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology 132, 390–404.

Ayers, J. C., Watson, E. B., 1993. Rutile solubility and mobility in supercritical aqueous fluids. Contributions to Mineralogy and Petrology 114, 321–330.

Barth, M. G., McDonough, W. F., Rudnick, R. L., 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology 165, 197–213.

Barth, M. G., Rudnick, R. L., Horn, I., McDonough, W. F., Spicuzza, M. J., Valley, J. W., Haggerty, S. E., 2002. Geochemistry of xenolithic eclogites from West Africa, pt 2: origins of the high MgO eclogites. Geochimica et Cosmochimica Acta 66, 4325–4345.

Barth, M. G., Rudnick, R. L., Horn, I., McDonough, W. F., Spicuzza, M. J., Valley, J. W., Haggerty, S. E., 2001. Geochemistry of xenolithic eclogites from West Africa, pt I: A link between low MgO eclogites and Archean crust formation. Geochimica et Cosmochimica Acta 65, 1499–1527.

Bennett, V. C., 2003. Compositional Evolution of the Mantle. Cosmochemical estimates of mantle composition, in: Treatise on Geochemistry. Vol. 2. The Mantle and Core / Carlson, R. W. (ed.). Elsevier, 493–519.

Bodinier, J.-L., Godard M., 2003. Orogenic, ophiolitic, and abyssal peridotites, in: Treatise on Geochemistry. Vol. 2. The Mantle and Core / Carlson, R. W. (ed.). Elsevier, 103–170.

Brenan, J. M., Shaw, H. F., Phinney, D. L., Ryerson, F. J., 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth and Planetary Science Letters 128, 327–339.

Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. U., Goncharov, A. F., 1996. The pressuretemperature phase and transformation diagram for carbon; updated through 1994. Carbon N. Y. 34, 141–153. https://doi.org/10.1016/0008-6223(96)00170-4

Chavagnac, V., 2004. A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75, 253–281. https://doi.org/10.1016/j.lithos.2004.03.001

Chen, B., Suzuki, K., Tian, W., Jahn, B., Ireland, T., 2009. Geochemistry and Os–Nd–Sr isotopes of the Gaositai Alaskan-type ultramafic complex from the northern North China craton: implications for mantle–crust interaction. Contributions to Mineralogy and Petrology 158, 683–702.

Downes H., 2001. Formation and modification of the shallow sub-continental lithospheric mantle:a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs. Journal of Petrology 42, 233–250.

Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta 64, 933–938.

Glebovitskii, V. A., Nikitina, L. P., Khiltova, V. Ya, Ovchinnikov, N. O., 2004. The Thermal Regimes of the Upper Mantle beneath Precambrian and Phanerozoic Structures up to the Thermobarometry data of Mantle Xenoliths. Lithos 74, 1–26.

Glebovitsky, V. A., Nikitina, L. P., Saltykova, A. K., Ovchinnikov, N. O., Babushkina, M. S., Egorov, K. N., Ashchepkov, I. V., 2007. Compositional heterogeneity of the continental lithospheric mantle beneath the Early Precambrian and Phanerozoic structures: Evidence from mantle xenoliths in kimberlites and alkaline basalts. Geochemistry International 45, 1077–1102.

Glebovitsky, V. A., Nikitina, L. P., Vrevskii, A. B., Pushkarev, Y. D., Babushkina, M. S., Goncharov, A. G., 2009. Nature of the chemical heterogeneity of the continental lithospheric mantle. Geochemistry International 47, 857–881. https://doi.org/10.1134/S001670290909002X

Goncharov, A. G., Ionov, D. A., Doucet, L. S., Pokhilenko, L. N., 2012. Thermal state, oxygen fugacity and C—O—H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters 357–358, 99–110. https://doi.org/10.1016/j.epsl.2012.09.016

Goncharov, A. G., Nikitina, L. P., Borovkov, N. V., Babushkina, M. S., Sirotkin, A. N., 2015. Thermal and redox equilibrium conditions of the upper-mantle xenoliths from the Quaternary volcanoes of NW Spitsbergen, Svalbard Archipelago. Russian. Geology and Geophysics 56, 1578–1602. https://doi.org/10.1016/j.rgg.2015.10.006

Grégoire, M., Bell, D. R., Le Roex, A. P., 2003. Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. Journal of Petrology 44, 629–657.

Haggerty, S. E., Ribbe, P. H., 1991. Oxide mineralogy of the upper mantle, in: Lindsley, D. H. (ed.), Oxide Minerals: Petrologic and Magnetic Significance. Mineral. Soc. Amer., 355–416.

Hasterok, D., Chapman, D. S., 2011. Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters 307, 59–70. https://doi.org/10.1016/j.epsl.2011.04.034.

Heaman, L. M., Creaser, R. A., Cookenboo, H. O., 2002. Extreme enrichment of high field strength elements in Jericho eclogite xenoliths: A cryptic record of Paleoproterozoic subduction, partial melting, and metasomatism beneath the Slave craton, Canada. Geology 30, 507–510.

Hollings, P., 2002. Archean Nb-enriched basalts in the northern Superior Province. Lithos 64, 1–14.

Ionov, D. A., Doucet, L. S., Ashchepkov, I. V., 2010. Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. Journal of Petrology 51, 2177–2210.

Johnson, J. S., Gibson, S. A., Thompson, R. N., Nowell, G. M., 2005. Volcanism in the Vitim volcanic field, Siberia: geochemical evidence for a mantle plume beneath the Baikal rift zone. Journal of Petrology 46, 1309–1344.

Kerrich, R., Xie, Q., 2002. Compositional recycling structure of an Archean super-plume: Nb—Th—U—LREE systematics of Archean komatiites and basalts revisited. Contributions to Mineralogy and Petrology 142, 476–484. https://doi.org/10.1007/s004100100301.

Klemme, S., Prowatke, S., Hametner, K., Günther, D., 2005. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochimica et Cosmochimica Acta 69, 2361–2371.

König, S., Schuth, S., 2011. Deep melting of old subducted oceanic crust recorded by superchondritic Nb/Ta in modern island arc lavas. Earth and Planetary Science Letters 301, 265–274.

Korolev, N. M., 2015. Eclogites of the Lithospheric Mantle of the Kasai Craton (Northeastern Angola): Petrology and Model of Formation. https://search.rsl.ru/ru/record/01008094346. (In Russian)

Lenoir, X., Garrido, C. J., Bodinier, J.-L., Dautria, J.-M., Gervilla, F., 2001. The recrystallization front of the Ronda peridotite: Evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. Journal of Petrology 42, 141–158.

Liang, J. L., Ding, X., Sun, X. M., Zhang, Z. M., Zhang, H., Sun, W. D., 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology 268, 27–40. https://doi.org/10.1016/j.chemgeo.2009.07.006

Liang, Y., 2008. Simple models for dynamic melting in an upwelling heterogeneous mantle column: Analytical solutions. Geochimica et Cosmochimica Acta 72, 3804–3821.

Manikyamba, C., Kerrich, R., Khanna, T. C., Keshav Krishna, A., Satyanarayanan, M., 2008. Geochemical systematics of komatiite — tholeiite and adakitic-arc basalt associations: The role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton, India. Lithos 106, 155–172. https://doi.org/10.1016/j.lithos.2008.07.003.

Mann, U., Frost, D. J., Rubie, D. C., 2009. Evidence for high-pressure core-mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements. Geochimica et Cosmochimica Acta 73, 7360–7386. https://doi.org/10.1016/j.gca.2009.08.006.

Meisel, T., Walker, R. J., Irving, A. J., Lorand, J.-P., 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta 65, 1311–1323.

Münker, C., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science 301, 84–87. https://doi.org/10.1126/science.1084662

Nakamura, D., 2009. A new formulation of garnet — clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental data set. Journal of Metamorphic Geology 27(7), 495–508. https://doi.org/10.1111/j.1525-1314.2009.00828.x

Nebel, O., van Westrenen, W., Vroon, P. Z., Wille, M., Raith, M. M., 2010. Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean. Geochimica et Cosmochimica Acta 74, 4392–4404.

Nikitina, L. P., Babushkina, M. S., Goncharov, A. G., 2016. Geochemistry of ree and hfse in the mantle peridotite and pyroxenite xenoliths from quaternary volcanoes of north-west spitsbergen. Proceedings of Russian Mineralogical Society CXLV, 26–47.

Nikitina, L. P., Bogomolov, E. S., Krymsky, R. Sh., Belyatsky, B. V., Korolev, N. M., Zinchenko, V. N., 2017. Nd—Sr—Os systems of eclogites in the lithospheric mantle of the Kasai Craton (Angola). Russian Geology and Geophysics 58, 1307–1318.

Nikitina, L. P., Korolev, N. M., Zinchenko, V. N., Felix, J. T., 2014. Eclogites from the upper mantle beneath the Kasai Craton (Western Africa): Petrography, whole-rock geochemistry and UPb zircon age. Precambrian research 249, 13–32. https://doi.org/10.1016/j.precamres.2014.04.014.

Niu Ya., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath Mid-Ocean Ridges. Journal of Petrology 45, 2423–2458.

O’Neill, H. St. C., 1991. The origin of the Moon and the early history of the Earth—a chemical model. 2. The Earth. Geochimica et Cosmochimica Acta 55(4), 1159–1172.

Palme, H., O’Neill, H. S. C., Holland, H. D., Turekian, K. K., 2003. Cosmochemical estimates of mantle composition, in: Treatise on Geochemistry. Vol. 2. The Mantle and Core / Carlson, R. W. (ed.). Elsevier, 1–38.

Pfänder, J. A., Jung, S., Münker, C., Stracke, A., Mezger, K., 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget — Evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta 77, 232–251. https://doi.org/10.1016/j.gca.2011.11.017

Pfander, J. A., Münker, C., Stracke, A., Mezger, K., 2007. Nb/Ta and Zr/Hf in ocean island basalts — Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters 254, 158.

Robinson, J. A. C., Wood, B. J., 1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters 164, 277–284.

Robinson, J. A. C., Wood, B. J., Blundy, J. D., 1998. The beginning of melting of fertile and depleted peridotite at 1. 5 GPa. Earth Planet. Sci. Lett. 155, 97–111.

Rudnick, R. L., Barth, M., Horn, I., McDonough, W. F., 2000. Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287(5451), 278–281.

Schmidberger, S. S., Simonetti, A., Francis, D., 2001. Sr—Nd—Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: Evidence for lithosphere stratification beneath Arctic Canada. Geochimica et Cosmochimica Acta 65, 4243–4255.

Schmidt, M. W., Dardon, A., Chazot, G., Vannucci, R., 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters 226, 415–432.

Schmidt, A., Mezger, K., O’Brien, P. J., 2011. The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane. Constraints from Lu-Hf garnet geochronology. Lithos 125, 743–756. https://doi.org/10.1016/j.lithos.2011.04.004

Schmidt, A., Weyer, S., John, T., Brey, G. P., 2009. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earth’s HFSE budget. Geochimica et Cosmochimica Acta 73, 455–468. https://doi.org/10.1016/j.gca.2008.10.028

Schwab, B. E., Johnston, A. D., 2001. Melting Systematics of Modally Variable, Compositionally Intermediate Peridotites and the Effects of Mineral Fertility. Journal of Petrology 1789–1811.

Sobolev, N. V., Logvinova, A. M., Lavrent’ev, Y. G., Karmanov, N. S., Usova, L. V., Koz’menko, O. A., Ragozin, A. L., 2011. Nb-rutile from eclogite microxenolith of the Zagadochnaya kimberlite pipe. Doklady of RAS 439, 970–973. https://doi.org/10.1134/S1028334X11070099

Sobolev, N. V., Yefimova, E. S., 2000. Composition and Petrogenesis of Ti-Oxides Associated with Diamonds. Journal of Petrology 42, 758–767. https://doi.org/10.1080/00206810009465110

Stalder, R., Foley, S. F., Brey, G. P., Horn, I., 1998. Mineral-aqueous fluid partitioning of trace elements at 900–1200 degrees C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica et Cosmochimica Acta 62(10), 1781–1801.

Takazawa, E., Frey, F. A., Shimizu, N., Obata, M., 2000. Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochimica et Cosmochimica Acta 64, 695–716.

Tolstikhin, I. N., Kramers, J. D., Hofmann, A. W., 2006. A chemical Earth model with whole mantle convection: The importance of a core-mantle boundary layer (DW) and itsearly formation. Chemical Geology 226, 79–99.

Tomlinson, K. Y., Hughes, D. J., Thurston, P. C., Hall, R. P., 1999. Plume magmatism and crustal growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake area, Western Superior Province. Lithos 46, 103–136.

Viljoen F., Dobbe R., Smit B., 2009. Geochemical processes in peridotite xenoliths from the Premier diamond min Africa: Evdencefor the depletion and referliisation of subcratonic lithosphere. Lithos 1125, 1133–1142.

Vrevskii, A. B., Glebovitsky, V. A., Goncharov, A. G., Nikitina, L. P., Pushkarev, Y. D., 2010. Continental lithospheric mantle beneath the crust structure of various age: chemical composition, thermal state, evolution. Vestniik ONZ. RAN, 2, NZ6009. https://doi.org/10.2205/2010NZ000027

Wade, J., Wood, B. J., 2001. The Earth’s “missing” niobium may be in the core. Nature 409, 75–78. https://doi.org/10.1038/35051064

Walker, R. J., Prichard, H. M., Ishiwatari, A., Pimentel, M., 2002. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites. Geochimica et Cosmochimica Acta 66, 329–345.

Walter, M., Katsura, T., Kubo, A., Shinmei, T., Nishikawa, O., Ito, E., Lesher, C., Funakoshi, K., 2002. Spinelgarnet lherzolite transition in the system CaO—MgO—Al2O3—SiO2 revisited: an in situ X-ray study. Geochimica et Cosmochimica Acta 66, 2109–2121.

Walter, M. J., 1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39, 29–60.

Weyer, S., Münker, C., Mezger, K., 2003. Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth and Planetary Science Letters 205, 309–324.

Witt-Eickschen, G., O’Neill, H. S. C., 2005. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chemiсal Geology 221, 65–101.

Wood, B. J., Wade, J., Kilburn, M. R., 2009. Core formation and the oxidation state of the Earth: Additional constraints from Nb, V and Cr partitioning. Geochimica et Cosmochimica Acta 72, 1415–1426.

Wu, F.-Y., Walker, R. J., Ren, X., Sun, D., Zhou, X., 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology 196, 107–129.

Zhai, Q. G., Jahn, B. M., Zhang, R. Y., Wang, J., Su, L., 2011. Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences 42, 1356–1370. https://doi.org/10.1016/j.jseaes.2011.07.023

Zhang, Z. M., Shen, K., Sun, W. D., Liu, Y. S., Liou, J. G., Shi, C., Wang, J. L., 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica et Cosmochimica Acta 72, 3200–3228. https://doi.org/10.1016/j.gca.2008.04.014

Загрузки

Опубликован

01.06.2019

Как цитировать

Никитина, Л. П. и Бабушкина, М. С. (2019) «Суперхондритовые Nb/Ta и Zr/Hf отношения в перидотитах и эклогитах субконтинентальной литосферной мантии: данные мантийных ксенолитов», Вестник Санкт-Петербургского университета. Науки о Земле, 64(2), сс. 294–314. doi: 10.21638/spbu07.2019.208.

Выпуск

Раздел

Статьи