Prediction of fracture intensity of carbonates based on the results of paleostress estimation by fault kinematic analysis based on the 3D seismic data (Kuyumba Oil Field)

Authors

  • Artem N. Moskalenko A. P. Karpinsky Russian Geological Research Institute (VSEGEI), 72, Sredny pr. V. O., St. Petersburg, 199106, Russian Federation
  • Р. Р. Хуснитдинов LLC “GAZPROMNEFT STC”, 75–79, nab. r. Moyki, St. Petersburg, 190000, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu07.2017.307

Abstract

The approach of prediction of fracture intensity of low permeability rocks is presented based on slip and dilation tendency analyses. The input data are faults kinematics data and the stress components that regulate their formation. As an example, data obtained from the Riphean complex of the Kuyumba oilfield and the concentrators of fractured oil reservoirs in the investigated region, is examined. Refs 19. Figs 5. Table 1.

Keywords:

Kuyumba oilfield, fractured oil reservoir, stress state, seismic horizon

Downloads

Download data is not yet available.
 

References

Литература

Багринцева, К. И., Красильникова, Н. Б., Сауткин, Р. С., 2015. Условия формирования и свойства карбонатных коллекторов рифея Юрубчено-Тохомского месторождения, в: Геология нефти и газа 1, 24–40.

Кирмасов, А. Б., 2011. Основы структурного анализа. Научный мир, Москва.

Конторович, А. Э., Изосимова, А. Н., Конторович, А. А., Хабаров, Е. М., Тимошина, И. Д., 1996. Геологическое строение и условия формирования гигантской Юрубчено-Тохомской зоны нефтегазонакопления в верхнем протерозое Сибирской платформы, в: Геология и геофизика 37, 166–195.

Москаленко, А. Н., Худолей, А. К., Жуков, В. В., Демин, В. Ю., Верин, А. В., 2015. Реконструкция кинематических характеристик разрывных нарушений и поля палеонапряжений для Урмано-Арчинской площади, в: Нефтегазовая геология. Теория и практика 5, 1–16.

Москаленко, А. Н., Худолей, А. К., Хуснитдинов, Р. Р., 2017. Реконструкция стресс состояний и тектонической эволюции северного склона Байкитской антеклизы Сибирской платформы по сейсмическим данным МОВ ОГТ-3D, в: Геотектоника 3, 1–22.

Ребецкий, Ю. Л., 2007. Тектонические напряжения и прочность природных массивов. Академкнига, Москва.

Стоянов, С. С., 1979. Механизм деформирования разрывных зон. Недра, Москва.

Хабаров, Е. М., Пономарчук, В. А., Морозова, И. П., Вараксина, И. В., Сараев, С. В., 2002. Вариации уровня моря и изотопного состава карбонатного углерода в рифейском бассейне западной окраины Сибирского кратона (Байкитская антеклиза), в: Геология и геофизика 43, 211–239.

Хабаров, Е. М., Вараксина, И. В., 2011. Строение и обстановки формирования мезопротерозойских нефтегазоносных карбонатных комплексов запада Сибирского кратона, в: Геология и геофизика 52, 1173–1198.

Харахинов, В. В., Шленкин, С. И., 2011. Нефтегазоносность докембрийских толщ Восточной Сибири на примере Куюмбинско-Юрубчено-Тохомского ареала нефтегазонакопления. Научный мир, Москва.

Шерман, С. И., Борняков, С. А., Буддо, В. Ю., 1983. Области динамического влияния разломов. Наука, Новосибирск.

Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., 1999. Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 5, 1–7.

Fossen, H., 2016. Structural Geology, 2nd ed. Cambridge University Press.

Frolov, S. V., Akhmanov, G. G., Bakay, E. A., Lubnina, N. V., Korobova, N. I., Karnyushina, E. E., Kozlova, E. V., 2015. Meso-Neoproterozioc petroleum systems of the Eastern Siberian sedimentary basin, in: Precambrian Reasearch 259, 95–113.

Lisle, J. R., Srivastava, D. C., 2004. Test of the frictional reactivation theory for faults and validity of fault-slip analysis, in: Geology 32, 569–572.

McFarland, J. M., Morris, A. P., Ferrill, D. A., 2012. Stress inversion using slip tendency, in: Computers and Geosciences 41, 40–46.

Morris, A., Ferrill, D. A., Henderson, D. B., 1996. Slip-tendency analysis and fault reactivation, in: Geology 24, 275–278.

Morris, A., Ferrill, D. A., 2009. The importance of the effective intermediate principal strain (σ2) to fault-slip patterns, in: J. of Structural Geology 31, 950–959.

Schwanghart, W., 2010. Ordinary Kriging. URL: http://www.mathworks.com/matlabcentral/fileexchange/29025


References

Bagrintseva, K. I., Krasil’nikova, N. B., Sautkin, R. S., 2015. Usloviia formirovaniia i svoistva karbonatnykh kollektorov rifeia Iurubcheno-Tokhomskogo mestorozhdeniia [Formation conditions and properties of the Riphean carbonaceous reservoirs of the Yurubcheno-Tokhomsk deposit]. Geologiia nefti i gaza [Oil and Gas Geology] 1, 24–40. (in Russian)

Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., 1999. Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today 5, 1–7.

Fossen, H., 2016. Structural Geology, 2nd ed. Cambridge University Press.

Frolov, S. V., Akhmanov, G. G., Bakay, E. A., Lubnina, N. V., Korobova, N. I., Karnyushina, E. E., Kozlova, E. V., 2015. Meso-Neoproterozioc petroleum systems of the Eastern Siberian sedimentary basin, in: Precambrian Reasearch 259, 95–113.

Khabarov, E. M., Ponomarchuk, V. A., Morozova, I. P., Varaksina, I. V., Saraev, S. V., 2002. Variatsii urovnia moria i izotopnogo sostava karbonatnogo ugleroda v rifeiskom basseine zapadnoi okrainy Sibirskogo kratona (Baikitskaia antekliza) [Sea level and δ13C trends in Riphean petroliferous deposits on the western margin of the Siberian Craton (Baikit uplift)], in: Geologiia i geofizika [Geology and Geophisics] 43, 211–239. (in Russian)

Kharakhinov, V. V., Shlenkin, S. I., 2011. Neftegazonosnost’ dokembriiskikh tolshch Vostochnoi Sibiri na primere Kuiumbinsko-Iurubcheno-Tokhomskogo areala neftegazonakopleniia [Petroleum-Bearing Potential of Precambrian Sequences in East Siberia: Case Study of the Kuyumba-Yurubchen-Tokhoma Petroleum Accumulation Areal]. Nauchnyi mir, Moscow. (in Russian)

Khabarov, E. M., Varaksina, I. V., 2011. Stroenie i obstanovki formirovaniia mezoproterozoiskikh neftegazonosnykh karbonatnykh kompleksov zapada Sibirskogo kratona [The Structure and Depositional Environments of Mesoproterozoic petroliferous carbonate complexes in the Western Siberian Craton], in: Geologiia i geofizika [Geology and Geophisics] 52, 1173–1198. (in Russian)

Kirmasov, A. B., 2011. Osnovy strukturnogo analiza [Fundamentals of structural analysis]. Nauchnyi mir, Moscow. (in Russian)

Kontorovich, A. E., Izosimova, A. N., Kontorovich, A. A., Khabarov, E. M., Timoshina, I. D., 1996. Geologicheskoe stroenie i usloviia formirovaniia gigantskoi Iurubcheno-Tokhomskoi zony neftegazonakopleniia v verkhnem proterozoe Sibirskoi platformy [Geological structure and conditions for the formation of the giant Yurubcheno-Tokhomskaya oil and gas accumulation zone in the Upper Proterozoic of the Siberian Platform], in: Geologiia i geofizika [Geology and Geophisics] 37, 166–195. (in Russian)

Lisle, J. R., Srivastava, D. C., 2004. Test of the frictional reactivation theory for faults and validity of fault-slip analysis, in: Geology 32, 569–572.

McFarland, J. M., Morris, A. P., Ferrill, D. A., 2012. Stress inversion using slip tendency, in: Computers and Geosciences 41, 40–46.

Morris, A., Ferrill, D. A., 2009. The importance of the effective intermediate principal strain (σ2) to fault-slip patterns, in: J. of Structural Geology 31, 950–959.

Morris, A., Ferrill, D. A., Henderson, D. B., 1996. Slip-tendency analysis and fault reactivation, in: Geology 24, 275–278.

Moskalenko, A. N., Khudolei, A. K., Khusnitdinov, R. R., 2017. Rekonstruktsiia stress-sostoianii i tektonicheskoi evoliutsii severnogo sklona Baikitskoi anteklizy Sibirskoi platformy po seismicheskim dannym MOV OGT-3D [Reconstruction of the Stress States and Tectonic Evolution of the Northern Slope of the Baikit Anteclise, Siberian Craton, Based on 3D seismic data], in: Geotektonika [Geotectonics] 3, 1–22. (in Russian)

Moskalenko, A. N., Khudolei, A. K., Zhukov, V. V., Demin, V. Iu., Verin, A. V., 2015. Rekonstruktsiia kinematicheskikh kharakteristik razryvnykh narushenii i polia paleonapriazhenii dlia Urmano-Archinskoi ploshchadi [Reconstruction of kinematic characteristics of faults and paleostress field for the Urman-Archinsk area], in: Neftegazovaya geologiya. Teoriya i praktika [Teoretical and Applied Studies] 5, 1–16. (in Russian)

Rebetskii, Iu. L., 2007. Tektonicheskie napriazheniia i prochnost’ prirodnykh massivov [Tectonic Stresses and Strength of Natural Rocks]. Akademkniga, Moscow. (in Russian)

Schwanghart, W., 2010. Ordinary Kriging. Available at: http://www.mathworks.com/matlabcentral/fileexchange/29025

Sherman, S. I., Borniakov, S. A., Buddo, V. Iu., 1983. Oblasti dinamicheskogo vliianiia razlomov [Areas of dynamic effect of faults]. Nauka, SO, Novosibirsk. (in Russian)

Stoianov, S. S., 1979. Mekhanizm deformirovaniia razryvnykh zon [Mechanism of deformation of fault damage zones]. Nedra, Moscow. (in Russian)

Published

2017-12-28

How to Cite

Moskalenko, A. N. and Хуснитдинов, Р. Р. (2017) “Prediction of fracture intensity of carbonates based on the results of paleostress estimation by fault kinematic analysis based on the 3D seismic data (Kuyumba Oil Field)”, Vestnik of Saint Petersburg University. Earth Sciences, 62(3), pp. 311–322. doi: 10.21638/11701/spbu07.2017.307.

Issue

Section

Articles