Origin of the coarse-grained (> 1 cm) clasts from the Mendeleev Ridge area (Central Arctic Ocean)

Authors

  • Alexey A. Krylov VNIIOkeangeologia, 1, Angliyskiy pr., St. Petersburg, 190121, Russian Federation; St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation; Arctic and Antarctic Research Institute, 38, ul. Beringa, St. Petersburg, 199397, Russian Federation https://orcid.org/0000-0001-5539-9758
  • Jens Matthiessen Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 12, Am Handelshafen, Bremerhaven, 27570, Germany https://orcid.org/0000-0002-6952-2494
  • Seung Il Nam Korea Polar Research Institute, Division of Polar Paleoenvironment, 26, Songdomirae-ro, Incheon, 21990, Republic of Korea
  • Ruediger Stein Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 12, Am Handelshafen, Bremerhaven, 27570, Germany; MARUM — Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, 8, Leobener str., Bremen, D-28359, Germany https://orcid.org/0000-0002-4453-9564
  • Evgenia A. Bazhenova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-8092-702X
  • Elena S. Mirolubova VNIIOkeangeologia, 1, Angliyskiy pr., St. Petersburg, 190121, Russian Federation
  • Evgeny A. Gusev VNIIOkeangeologia, 1, Angliyskiy pr., St. Petersburg, 190121, Russian Federation https://orcid.org/0000-0001-6045-0730
  • Sergey A. Malyshev VNIIOkeangeologia, 1, Angliyskiy pr., St. Petersburg, 190121, Russian Federation; Arctic and Antarctic Research Institute, 38, ul. Beringa, St. Petersburg, 199397, Russian Federation https://orcid.org/0000-0002-9130-790X
  • Alexander S. Makarov Arctic and Antarctic Research Institute, 38, ul. Beringa, St. Petersburg, 199397, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2020.411

Abstract

The morphometric and petrographic characteristics of coarse-grained clasts (> 1 cm) sampled from sediments of the Amerasian Basin, Central Arctic Ocean, were studied. Most of the clasts are represented by dolomites (46.4 %), sandstones (22.8 %) and limestones (19.8 %); the amount of other rock fragments (chert, shale, igneous) is about 10 %. A variety of lithological types were identified among the studied rock fragments. Limestones and dolomitic limestones often contain fragments of fauna. The majority of clasts are poorly rounded and characterized by a wide variety of shapes. More than 50 % of the studied clasts have a size of 1-2 cm, 25 % are 2-3 cm, and larger clasts only occur in insignificant amounts. Geophysical surveys across the sampling sites showed a lack of bedrock outcrops, so the studied coarse-grained clasts are not of local origin. It is concluded that they were predominantly delivered from the Canadian Arctic Archipelago (likely from the platform area, e. g., Victoria Island), mainly due to iceberg rafting during deglaciation periods. The maximum possible contribution of clasts from Siberian sources is less than 23 %. The distribution of coarse-grained clasts argues for the existence of quite a stable ice drift path in the past, which is similar to the modern Beaufort Gyre.

Keywords:

Mendeleev Ridge, Arctic Ocean, dropstones, iceberg rafting

Downloads

Download data is not yet available.
 

References

Avetisov, G. P., Butsenko, V. V., Chernykh, A. A. et al. (2019). The Current State of the Arctic Basin Study. In: A. Piskarev et al., ed., Geologic Structures of the Arctic Basin. Springer International Publishing AG, 1–69. https://doi.org/10.1007/978-3-319-77742-9_1

Bazhenova, E., Fagel, N. and Stein, R. (2017). North American origin of “pink-white” layers at the Mendeleev Ridge (Arctic Ocean): New insight from lead and neodymium isotope composition of detrital sediment component. Marine Geology, 386, 44–55. http://doi.org/10.1016/j.margeo.2017.01.010

Bischof, J. and Darby, D. (1997). Mid- to Late Pleistocene ice drift in the western Arctic Ocean: Evidence for a different circulation in the past. Science, 277, 74–78. http://doi.org/10.1126/science.277.5322.74

Boggild, K., Mosher, D. C., Travaglini, P., Gebhardt, C. and Mayer, L. (2020). Mass wasting on Alpha Ridge in the Arctic Ocean: new insight from multibeam bathymetry and sub-bottom profiler data. In: A. Georgiopoulou, L. A. Amy, S. Benetti, J. D. Chaytor, M. A. Clare, D. Gamboa, P. D. W. Haughton, J. Moernaut, J. J. Mountjoy, ed., Subaqueous Mass Movements and their Consequences: Advances in Process Under standing, Monitoring and Hazard Assessments. Geological Society, London, Special Publications, 500, 323–340. https://doi.org/10.1144/SP500-2019-196

Bruvoll, V., Kristoffersen, Y., Coakley, B. J. and Hopper, J. (2010). Hemipelagic deposits on the Mendeleev and Alpha sub-marine ridges in the Arctic Ocean: acoustic stratigraphy, depositional environment and inter-ridge correlation calibrated by the ACEX results. Marine Geophysical Research, 31, 149–171. https://doi.org/10.1007/s11001-010-9094-9

Chernykh, A., Glebovsky, V., Zykov, M. and Korneva, M. (2018). New insights into tectonics and evolution of the Amerasia Basin. J. Geodynamics, 119, 167–182. http://doi.org/10.1016/j.jog.2018.02.010

Clark, D. L. and Hanson, A. (1983). Central Arctic Ocean sediment texture: A key to ice transport mechanisms. In: B. F. Molnia, ed., Glacial-marine sedimentation. New York: Plenum Publishing Corporation, 301–330.

Cronin, T. M., Polyak, L., Reed, D., Kandiano, E. S., Marzen, R. E. and Council, E. A. (2013). A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes. Quatern. Sci. Rev., 79, 157–167. http://doi.org/10.1016/j.quascirev.2012.12.010

Darby, D. A. (2014). Ephemeral formation of perennial sea-ice in the Arctic Ocean during the middle Eocene. Nature Geoscience, 7, 210–213. https://doi.org/10.1038/ngeo2068

Darby, D. A., Polyak, L. and Bauch, H. A. (2006). Past glacial and interglacial conditions in the Arctic Ocean and marginal seas — a review. Progress in Oceanography, 71, 129–144. https://doi.org/10.1016/j. pocean.2006.09.009

Darby, D. A., Myers, W. B., Jakobsson, M. and Rigor, I. (2011) Modern dirty sea ice characteristics and sources: The role of anchor ice. J. Geophys. Res., 116, C09008, 1–18. https://doi.org/10.1029/2010JC006675

Darby, D. A., Myers, W., Herman, S. and Nicholson, B. (2015). Chemical fingerprinting, a precise and efficient method to determine sediment sources. J. Sedim. Res., 85, 247–253. http://doi.org/10.2110/jsr.2015.17

Darby, D. A. and Zimmerman, P. (2008). Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Research, 27, 114–127. http://doi.org/10.1111/j.1751-8369.2008.00057.x

Dethleff, D. (2005). Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. J. Geophys. Res., 110, C07009. http://doi.org/10.1029/2004JC002740

Dethleff, D. and Kuhlmann, G. (2010). Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source regions. Polar Research, 29, 265–282. http://doi.org/10.1111/j.1751-8369.2010.00149.x

Dewing, K., Hadlari, T., Rainbird, R. H. and Bedard, J. H. (2015). Phanerozoic geology, northwestern Victoria Island, Northwest Territories; Geological Survey of Canada, Canadian Geoscience Map 171 (preliminary), scale 1:500 000. http://doi.org/10.4095/295530

Dong, L., Liu, Y., Shi, X., Polyak, L., Huang, Y., Fang, X., Liu, J., Zou, J., Wang, K., Sun, F. and Wang, X. (2017). Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history. Climate of the past, 13, 511–531. http://doi.org/10.5194/cp-13-511-2017

Drachev, S. S., Malyshev, N. A. and Nikishin, A. M. (2010) Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. In: B. A. Vining, S. C. Pickering, ed., Petroleum Geology: From Mature Basins to New Frontiers — Proceedings of the 7th Petroleum Geology Conference, 591–619. http://doi.org/10.1144/0070591

Embry, A. and Beauchamp, B. (2008). Sverdrup Basin. In: Sedimentary Basins of the World, 5, 451–471. http://doi.org/10.1016/S1874-5997(08)00013-0

Frolov, I. E., Ivanov, V. V., Filchuk, K. V. et al. (2019). Transarktika-2019: winter expedition in the Arctic Ocean on the R/V “Akademik Tryoshnikov”. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research, 65 (3), 255–274. http://doi.org/10.30758/0555-2648-2019-65-3-255-274

Grantz, A., Phillips, R. L., Mullen, M. W., Starratt, S. W., Jones, G. A., Sathy, N. A. and Finney, B. P. (1996). Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean. Marine Geology, 133, 51–73.

Gusev, E. A. (2014). Stones on the Arctic Ocean Bottom. Priroda, 8, 31–38. (In Russian)

Gusev, E. A., Rekant, P. V., Bolshiyanov, D. Yu., Lukashenko, R. V. and Popko, A. O. (2013). Pseudoglacial structures of Mendeleev Rise Seamounts (Arctic Ocean) and East Siberian continental margin. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research, 4, 43–55. (In Russian)

Gusev, E. A., Lukashenko, R. V., Popko, A. O., Rekant, P. V., Mirolubova, E. S. and Pyatkova, M. N. (2014). New data on the structure of slopes of the Mendeleev Ridge Seamounts (Arctic Ocean). Doklady Earth Sciences, 455 (1), 250–253. http://doi.org/10.1134/S1028334X14030179

Gusev, E., Rekant, P., Kaminsky, V., Krylov, A., Morozov, A., Shokalsky, S. and Kashubin, S. (2017) Morphology of seamounts at the Mendeleev Rise, Arctic Ocean. Polar Research, 36 (1), 1298901. http://doi.org/10.1080/17518369.2017.1298901

Hadlari, T., Midwinter, D., Galloway, J. M., Dewing, K. and Durbano, A. M. (2016). Mesozoic rift to post-rift tectonostratigraphy of the Sverdrup Basin, Canadian Arctic. Mar Petrol Geol., 76, 149–158. http://doi.org/10.1016/j.marpetgeo.2016.05.008

Harrison, J. C., Christie, R. L., Rainbird, R. H. and Ford, A. (2013). Geology, Tectonic assemblage map of the Cambridge Bay area, southeastern Victoria Island, Nunavut; Geological Survey of Canada, Canadian Geoscience Map 78 (preliminary), scale 1:500 000. http://doi.org/10.4095/292813

Hegewald, A. and Jokat, W. (2013). Relative sea level variations in the Chukchi region — Arctic Ocean — since the late Eocene. Geophys. Research Letters, 40 (1–5). http://doi.org/10.1002/GRL.50182

Jakobsson, M., Macnab, R., Mayer,L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W. and Johnson, P. (2008). An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35, L07602, 1–5. http://doi.org/10.1029/2008GL033520

Jakobsson, M., Andreassen, K., Bjarnadottir, L. R., Dove, D., Dowdeswell, J. A. et al. (2014). Arctic Ocean glacial history. Quaternary Science Reviews, 92, 40–67. https://doi.org/10.1016/j.quascirev.2013.07.033

Jakobsson, M., Nilsson, J., Anderson, L. et al. (2016). Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nature Communication, 7 (10365), 1–10. http://doi.org/10.1038/ncomms10365

Jokat, W. (ed.) (2012). The Expedition of the Research Vessel “Polarstern” to the Arctic in 2008 (ARK-XXI-II/3). Reps. Pol. Mar. Res., 597, 221.

Kaban’kov, V., Andreeva, I., Ivanov, V. and Petrova, V. (2004). The geotectonic nature of the Central Arctic Morphostructures and geological implications of bottom sediments for its interpretation. Geotectonics, 6, 33–48.

Kaparulina, E., Strand, K. and Lunkka, J. P. (2016). Provenance analysis of central Arctic Ocean sediments: Implication for circum-Arctic ice sheet dynamics and ocean circulation during Late Pleistocene. Quaternary Sci. Rev., 147, 210–220. http://doi.org/10.1016/j.quascirev.2015.09.017

Khabakov, A. V. (ed.). (1962). Atlas of textures and structures of sedimentary rocks. Part 1: clastic and clay rocks. Moscow: Gosgeoltekhizdat Publ. Available at: http://www.lithology.ru/node/456 [Accessed Nov. 28, 2020]. (In Russian)

Kos’ko, M. K. and Ushakov, V. I. (eds.). (2003). Wrangel island. geological structure, mineralogy, geoecology. Proceedings of NIIGA-VNIIOkeangeologia, 200. St. Petersburg. (In Russian)

Kossovaya, O. L., Tolmacheva, T. Yu., Petrov, O. V., Isakova, T. N., Ivanova, R. M., Mirolyubova, E. S., Rekant, P. V. and Gusev, E. A. (2018). Palaeozoic carbonates and fossils of the Mendeleev Rise (eastern Arctic): A study of dredged seafloor material. Journal of Geodynamics, 120, 23–44. http://doi. org/10.1016/j.jog.2018.05.001

Krylov, A. A., Andreeva, I. A., Vogt, C., Backman, J., Krupskaya, V. V., Grikurov, G. E., Moran, K. and Shoji, H. (2008). A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography, 23, PA1S06. http://doi.org/10.1029/2007PA001497

Krylov, A. A., Shilov, V. V., Andreeva, I. A. and Mirolubova, E. S. (2011). Stratigraphy and accumulation of Upper Quaternary sediments in the northern part of the Mendeleev Rise (Amerasian Basin, Arctic Ocean). Problemy Arktiki i Antarktiki. Arctic and Antarctic Research, 2 (88), 7–22. (In Russian)

Krylov, A. A., Gusev, E. A., Mirolubova, E. S. and Chernykh, A. A. (2018). Geological and paleooceanological significance of psephite from the cretaceous-cenozoic deposits from the near-pole part of the Lomonosove ridge. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research, 64 (2), 182–199. http:// doi.org/10.20758/0555-2648-2018-64-2-182-199. (In Russian)

Levitan, M. A. (2015). Sedimentation rates in the Arctic Ocean during the last five marine isotope stages.

Oceanology, 55 (3), 425–433. https://doi.org/10.1134/S000143701503011X

Lisitzin, A. P. (2002). Sea-ice and iceberg sedimentation in the ocean. Recent and past. Heidelberg, Berlin: Springer-Verlag.

Lopatin, B. G. (ed.). (1999). State geological map of sheet S 53–55 (new series). New Siberian Islands. Scale 1: 1000000. St. Petersburg: VSEGEI Publ. (In Russian)

Matthiessen, J., Knies, J., Vogt, C. and Stein, R. (2009). Pliocene palaeoceanography of the Arctic Ocean and subarctic seas. Phil. Trans. R. Soc. A, 367, 21–48. http://doi.org/10.1098/rsta.2008.0203

Matthiessen, J. and Kollaske, T. (2012). Marine sediment echosounding using Parasaund. In: U. Schauer, ed., The Expedition of the RV “Polarstern” to the Arctic in 2011 (ARK-XXVI/3 — TransArc). Rep. Pol. Mar. Res., 649, 124–129.

Melnikov, I. A. and Zezina, O. N. (2010). Bottom animals on the ice of the central Arctic. Priroda, 6, 43–47. (In Russian)

Morozov, A. F., Petrov, O. V., Shokalskyi, S. P. et al. (2013). New geological data supporting continental origin of the Central Arctic Rises. Regional’naia geologiia i metallogeniia, 53, 34–55. (In Russian)

Niessen, F. and Matthiessen, J. (2009). Marine sediment echosounding using Parasaund. In: W. Jokat, ed., The Expedition ARK-XXIII/3 of RV Polarstern in 2008. Rep. Pol. Mar. Res., 597, 15–23.

Niessen, F., Hong, J. K., Hegewald, A., Matthiessen, J., Stein, R., Kim, H., Kim, S., Jensen, L., Jokat, W., Nam, S.-I. and Kang, S.-H. (2013). Repeated Pleistocene glaciation of the East Siberian continental margin. Nature Geoscience, 6, 842–846. http://doi.org/10.1038/ngeo1904

Nikolaev, S. D., Taldenkova, E. E., Rekant, P. V., Chistyakova, N. O. and Mirolyubova, E. S. (2013). Paleogeography of the Eurasian part of the submarine Lomonosov Ridge in the Neo-Pleistocene. Vestnik Moskovskogo Universiteta, Seriia 5: Geografiia, 5, 51–59. (In Russian)

Nørgaard-Pedersen, N., Spielhagen, R. F., Thiede, J. and Kassens, H. (1998). Central Arctic surface ocean environment during the past 80000 years. Paleoceanography, 13, 193–204. https://doi.org/10.1029/97PA03409

Nørgaard-Pedersen, N., Spielhagen, R. F., Erlenkeuser, H., Grootes, P. M., Heinemeier, J. and Knies, J. (2003). Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover. Paleoceanography, 18 (3), 1063, 1–19. http://doi.org/10.1029/2002PA000781

Nürnberg, D., Wollenburg, I., Dethleff, D., Eicken, H., Kassens, H., Letzig, T., Reimnitz, E. and Thiede, J. (1994). Sediments in Arctic sea ice: Implications for entrainment, transport and release. Mar. Geol., 119, 185–214. https://doi.org/10.1016/0025-3227(94)90181-3

Petrov, O. M., Morozov, A., Shokalsky, S., Kashubin, S., Artemieva, I. M., Sobolev, N., Petrov, E., Ernst, R. E., Sergeev, S. and Smelror, M. (2016). Crustal structure and tectonic model of the Arctic region. Earth-Science Reviews, 154, 29–71. http://doi.org/10.1016/j.earscirev.2015.11.013

Phillips, R. L. and Grantz, A. (2001). Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Mar. Geol., 172, 91–115. https://doi.org/10.1016/S0025-3227(00)00101-8

Polyak, L., Bischof, J., Ortiz, J., Darby, D., Channell, J., Xuan, C., Kaufman, D., Lovlie, R., Schneider, D. and Adler, R. (2009). Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global Planet. Change, 68, 5–17. https://doi.org/10.1016/j.gloplacha.2009.03.014

Polyak, L., Alley, R. B., Andrews, J. T. et al. (2010). History of sea ice in the Arctic. Quaternary Science Reviews, 29, 1757–1778. https://doi.org/10.1016/j.quascirev.2010.02.010

Reimnitz, E., McCormick, M., McDougall, K. and Brouwers, E. (1993). Sediment export by ice rafting from a coastal polynya, Arctic Alaska, U.S.A. Arctic Alpine Research, 25, 83–98. http://doi.org/10.2307/1551544

Rekant, P. V., Pyatkova, M. N., Nikolaev, S. D. and Taldenkova, E. E. (2012). Stones from the Geophysics spur as a petrotype of the basement of the Southern part of the Lomonosov Ridge (Arctic Ocean). In: Geology and Geoecology of the Eurasian continental margins. Issue 4. Moscow: GEOS Publ., 29–40. (In Russian)

Rekant, P., Sobolev, N., Portnov, A., Belyatsky, B., Dipre, G., Pakhalko, A., Kaban’kov, V. and Andreeva, I. (2019). Basement segmentation and tectonic structure of the Lomonosov Ridge, Arctic Ocean: Insights from bedrock geochronology. J. Geodynamics, 128, 38–54. https://doi.org/10.1016/j.jog.2019.05.001

Schauer, U. (ed.). (2012). The Expedition of the Research Vessel “Polarstern” to the Arctic in 2011 (ARK-XX-VI/3 — TransArc). Reps. Pol. Mar. Res., 649, 203.

Shevchenko, V. P., Lisitzin, A. P., Kharin, G. S., Haas, Ch., Thiede, J., Stein, R., Spielhagen, R. E. and Taldenkova, E. E. (2003). Sediment transport in the central Arctic by icebergs. In: Geology of seas and oceans: Proceedings of XV International Conference on Marine Geology, 1, 63–64. (In Russian)

Spielhagen, R. F., Baumann, K.-H., Erlenkeuser, H. et al. (2004). Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quaternary Science Rev., 23, 1455–1483. https://doi.org/10.1016/j.quascirev.2003.12.015

St. John, K. (2008). Cenozoic History of Ice-Rafting in the Central Arctic: Terrigenous Sands on the Lomonosov Ridge. Paleoceanography, 23, PA1S05. https://doi.org/10.1029/2007PA001483

Stein, R. (2008). Arctic Ocean sediments: processes, proxies, and paleoenvironment. Elsevier.

Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S.-I. and Bazhenova, E. (2010). Towards a better (litho-) stratigraphy and reconstruction of Quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79 (2), 97–121.

Stein, R., Weller, P., Backman, J., Brinkhuis, H., Moran, K. and Palike, H. (2014). Cenozoic Arctic Climate History: Some highlights from the Integrated Ocean Drilling Program Arctic Coring Expedition. Developments in Marine Geology, 7, 259–293.

Stein, R., Fahl, K., Schreck, M. et al. (2016). Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat. Commun., 7, 11148. http://doi.org/10.1038/ncomms11148

Taldenkova, E., Bauch, H. A., Gottschalk, J., Nikolaev, S., Rostovtseva, Yu., Pogodina, I., Ovsepyan, Ya. and Kandiano, E. (2010). History of ice-rafting and water mass evolution at the northern Siberian continental margin (Laptev Sea) during Late Glacial and Holocene times. Quaternary Sci. Rev., 29, 3919–3935. http://doi.org/10.1016/j.quascirev.2010.09.013

Tremblay, L. B., Schmidt, G. A., Pfirman, S., Newton, R. and De Repentigny, P. (2015). Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? Phil. Trans. R. Soc. A, 373, 20140168. http://doi.org/10.1098/rsta.2014.0168

Trettin, H. P. (ed.). (1991). Geology of the Innuitian orogeny and Arctic platform of Canada and Greenland.Geology of Canada, (3), 569.

Vogt, C. and Knies, J. (2008). Sediment dynamics in the Eurasian Arctic Ocean during the last deglaciation — The clay mineral group smectite perspective. Marine Geology, 250, 211–222. https://doi.org/10.1016/j.margeo.2008.01.006

Weigelt, E., Jokat, W. and Franke, D. (2014). Seismostratigraphy of the Siberian Sector of the Arctic Ocean and adjacent Laptev Sea Shelf. J. Geophys. Res. Solid Earth, 119, 5275–5289. http://doi.org/10.1002/2013JB010727

Zingg, T. (1935). Beitrag zur Schotteranalyse. Schweizer Mineralog. U. Petrog. Mitt., 15, 39–140.

Downloads

Published

2020-10-12

How to Cite

Krylov, A. A. (2020) “Origin of the coarse-grained (> 1 cm) clasts from the Mendeleev Ridge area (Central Arctic Ocean)”, Vestnik of Saint Petersburg University. Earth Sciences, 65(4). doi: 10.21638/spbu07.2020.411.

Issue

Section

Articles