Mineral phases of metals in industrial sediments of St. Petersburg rivers with extreme pollution

Authors

  • Anatoly Yu. Opekunov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Svetlana Yu. Janson St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Marina G. Opekunova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Stepan Yu. Kukushkin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2021.205

Abstract

The aim of the research was to determine the patterns of distribution of metals and their main mineral phases in technogenic bottom sediments of St. Petersburg watercourses in conditions of extreme pollution. The objects of research were the Yekaterinofka, Okhta, Krasnen'kaya, Smolenka, Karpovka and Chernaya Rechka Rivers. Bottom sediments of urbanized rivers are characterized by abnormally high concentrations of metals and metalloids (TMM). The maximum metal content established in river sediments corresponds to ore concentrations: Cu - 0.487 %, Pb - 5.54 %, Co - 0.129 %, Cd - 0.0439 %, Ba - 6.32 % and Zn - 0.818 %.According to the Geoaccumulation Index (Igeo), TMMs are characterized from moderate and severe pollution (Cr, Co, Ni, Zn, As) to extremely severe (Cu, Cd, Sb, Hg). The rivers have their own geochemical specialization of bottom sediments: the Okhta River is characterized by the highest concentrations of Ba, As, Sb, Zn and Hg; the Ekaterinofka River - Cr, Co, Mn, Pb, Cd; Smolenka River - Cu; Red - Fe, V, Sc; Chernaya Rechka River - Ni. Based on the method of the main components of factor analysis, paragenetic associations are identified that indicate the main sources of pollution: the production of batteries using Sb-Cd-Pb-Co-Mn (Yekaterinofka River) and Ni (Karpovka River), paints and varnishes using Ba-Hg-As-Zn (Okhta River) and metal processing Cu-Cr (Yekaterinofka, Smolenka and Chernaya Rechka Rivers). Scanning electron micrographs studies showed a variety of authigenic minerals, among which barite, hematite, magnetite, goethite are of primary importance. The amount of barite formed is proportional to the concentration of Ba in the sediments. There are metal sulfides, framboidal pyrite, sphalerite, chalcopyrite, galena. An important feature of early diagenetic changes in the composition of sediments under extreme pollution conditions of the studied rivers is shown - the formation of native metals (Fe, Pb) and aggregates of complex composition (Fe, Pb, Zn, Cu). This is probably one of the significant mechanisms of the flow of metals under conditions of sustainable technogenesis.

Keywords:

metals and metalloids, paragenesis of metals, sedimentation rate, authigenic minerals, mineral aggregates

Downloads

Download data is not yet available.
 

References

Baltpurvins, K. A., Burns, R. C., Lawrance, G. A. and Stuart, A. D. (1996). Effect of pH and Anion Type on the Aging of Freshly Precipitated Iron(III) Hydroxide Sludges. Environ. Sci. Technol., 30 (3), 939–944.

Billon, G., Ouddane, B., Laureyns, J. and Boughriet, A. (2001). Chemistry of metal sulfides in anoxic sediments. Phys. Chem., 3, 3586–3592.

Burton, G. A. (2010). Metal bioavailability and toxicity in sediments. Crit. Rev. Environ. Sci. Technol., 40, 852–907.

Canavan, R. W., Van-Cappellen, P., Zwolsman, J. J. G., Van-den-Berg, G. A. and Slomp, C. P. (2007). Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Sci. Total Environ., 381, 263–279.

Cravotta, C. A. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: Geochemical controls on constituent concentrations. Applied Geochemistry, 23, 203–226.

Ekere, N., Yakubu, N. and Ihedioha, J. (2017). Ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbonsin sediments of rivers Niger and Benue confluence, Lokoja, Central Nigeria. Environ. Sci. Pollution Res., 24 (23), 18966–18978.

Ingvertsen, S. T., Marcussen, H. and Holm, P. E. (2013). Pollution and potential mobility of Cd, Ni and Pb in the sediments of a wastewater-receiving river in Hanoi. Vietnam Environmental Monitoring and Assessment, 185 (11), 9531–9548.

Kowalska, J. B., Mazurek, R., Gasiorek, M. and Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination — A review. Environ Geochem Health, 40, 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

Leonova, G. A., Mal’tsev, A. E., Melenevskii, V. N., Miroshnichenko, L. V., Kondrat’eva, L. M. and Bobrov, V. A. (2018). Geochemistry of Diagenesis of Organogenic Sediments: An Example of Small Lakes in Southern West Siberia and Western Baikal Area. Geochemistry International, 56 (4), 344–361. https://doi.org/10.1134/S0016702918040043

Lesven, L., Lourino-Cabana, B., Billon, G., Recourt, P., Ouddane, B., Mikkelsen, O. and Boughriet, A. (2010). On metal diagenesis in contaminated sediments of the Deûle river (northern France). Applied Geochemistry, 25, 1361–1373.

Liu, B., Nie, Y., Gao, X., Hu, K. and Yang, J. (2017). The diagenetic geochemistry and contamination assessment of iron, cadmium, and lead in the sediments from the Shuangtaizi estuary, China. Environ. Earth Sci., 76, 168. https://doi.org/10.1007/s12665-017-6481-4

Lynch, S. F. L., Batty, L. C. and Byrne, P. (2014). Environmental Risk of Metal Mining Contaminated River Bank Sediment at Redox-Transitional Zones. Minerals, 4, 52–73. https://doi.org/10.3390/min4010052

Milacic, R., Zuliani, T., Vidmar, J., Oprckal, P. and Scancar, J. (2017). Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Sci. Total Environ., 605–606 (15), 894–905.

Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

Opekunov, A. Yu. (2012). Environmental sedimentology. Tutorial. St. Petersburg: St. Petersburg University Press. (In Russian)

Opekunov, A. Yu., Mitrofanova, E. S. and Opekunova, M. G. (2017). Technogenic transformation of the composition of bottom sediments of rivers and canals in St. Petersburg. Geoecology. Engineering geology. Hydroecology. Geocryology, 4, 48–61. (In Russian)

Opekunov, A. Yu., Mitrofanova, E. S., Spasskii, V. V., Opekunova, M. G., Sheinerman, N. A. and Chernyshova, A. V. (2020). Chemistry and Toxicity of Bottom Sediments in Small Watercourses of St. Petersburg. Water Resources, 47 (2), 282–293. https://doi.org/10.1134/S0097807820020116

Osán, J., Török, S., Alföldy, B., Alsecz, A., Falkenberg, G., Baik, S. Y. and Van Grieken, R. (2007). Comparison of sediment pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques. Spectrochim. Acta. Part B: Atom. Spectros., 62, 123–136.

Slukovskii, Z., Dauvalter, V., Guzeva, A., Denisov, D., Cherepanov, A. and Siroezhko, E. (2020). The hydrochemistry and recent sediment geochemistry of small lakes of Murmansk, Arctic zone of Russia. Water, 12, 1130. https://doi.org/10.3390/w12041130

Strakhovenko, V., Subetto, D., Ovdina, E., Danilenko, I., Belkina, N., Efremenko, N. and Maslov, A. (2020). Mineralogical and Geochemical studies of Late Holocene bottom sediments of Lake Onega. Journal of Great Lakes Research, 46, 443–455.

Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii. Environ. Geol., 39, 611–627.

Taylor, K. G. and Boult, S. (2007). The role of grain dissolution and diagenetic mineral precipitation in the cycling of metals and phosphorus: A study of a contaminated urban freshwater sediment. Applied Geochemistry, 22, 1344–1358.

Taylor, K. G., Boyd, N. A. and Boult, S. (2003). Sediments, porewaters and diagenesis in an urban waterbody, Salford, UK: impacts of remediation. Hydrol. Process., 17, 2049–2061.

Taylor, K. G., Hudson-Edwards, K. A., Bennett, A. J. and Vishnyakov, V. (2008). Early diagenetic vivianite [Fe3(PO4)28H2O] in a contaminated freshwater sediment and insights into zinc uptake: A -EXAFS, -XANES and Raman study. Applied Geochemistry, 23, 1623–1633.

Vodyanitskii, Y. N. (2010). Iron hydroxides in soils: a review of publications. Eurasian Soil Science, 43 (11), 1244–1254. https://doi.org/10.1134/S1064229310110074

Yanin, E. P. (2018). Technogenic river silts (conditions of formation, material composition, geochemical features). Moscow: NP “ARSO” Publ. (In Russian)

Zverev, V. P. (1993). Hydrogeochemistry of the sedimentary process. In: Trudy GIN RAN. Vyp. 477. Moscow: Nauka Publ. (In Russian)

Published

2021-05-05

How to Cite

Opekunov, A. Y. (2021) “Mineral phases of metals in industrial sediments of St. Petersburg rivers with extreme pollution”, Vestnik of Saint Petersburg University. Earth Sciences, 66(2). doi: 10.21638/spbu07.2021.205.

Issue

Section

Articles

Most read articles by the same author(s)