Assessment of the accuracy of snow water equivalent calculation with the use of global numerical weather prediction models and SnoWE snowpack model (by the example of the Kama River basin)

Authors

  • Andrey N. Shikhov Perm State University, 15, ul. Bukireva, Perm, 614990, Russian Federation
  • Evgenii V. Churiulin Hydrometeorological Centre of Russia, 11–13, Bolshoy Predtechensky per., Moscow, 123242, Russian Federation; Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation
  • Rinat K. Abdullin Perm State University, 15, ul. Bukireva, Perm, 614990, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2021.110

Abstract

The paper discusses the results of snow cover formation and snowmelt modeling in the Kama River basin (S = 507 km2) using two approaches previously developed by the authors. The first one is the SnoWE snowpack model developed at the Hydrometeorological Center of the Russian Federation and used in quasi-operational mode since 2015, and the second is a GIS- based empirical technique which was previously implemented for the Kama River basin. Both methods are based on a combination of numerical weather prediction (NWP) models’ data with operational synoptic observations at the weather stations. The study was performed for the winter seasons 2018/2019 and 2019/2020. To assess the reliability of simulated snow water equivalent (SWE), we obtained in-situ data from 68 locations (snow survey routes) distributed over the entire area of the river basin. As a result of the study, the main advantages and limitations of the two methods for SWE calculation were identified. As for the maximum values of SWE, the root mean square error (RMSE) of simulated SWE ranges from 14 to 28 % of the average observed SWE according to in-situ data. It was found that the SnoWE model more reliably reproduces SWE in the lowland part of the river basin. Simultaneously, SWE was substantially underestimated according to the SnoWE model in the northern and mountainous parts of the basin. The second method provides a more realistic estimate of the spatial distribution of SWE over the area, as well as a higher accuracy of calculation for the northern part of the river basin. The main drawback of the method is the substantial overestimation of the intensity of snowmelt and snow sublimation. Consequently, the accuracy of SWE calculations sharply decreases in the spring season. SWE calculation accuracy in the winter season 2019/2020 was substantially lower than in 2018/2019 due to frequent thaws.

Keywords:

snow cover, snow water equivalent, SWE, numerical weather prediction models, SnoWE snowpack cover model, GIS technologies, Kama river basin

Downloads

Download data is not yet available.
 

References

svgimet.ru. (n. d.). Неблагоприятная паводковая обстановка в Прикамье. [online] Доступно на: http://svgimet.ru/?p=34132 [Дата доступа 19.02.2021].

Виноградов, Ю. Б., Виноградова, Т. А. (2010). Математическое моделирование в гидрологии. Москва: Издательский центр «Академия».

Казакова, Е. В. (2015). Ежедневная оценка локальных значений и объективный анализ характери стик снежного покрова в рамках системы численного прогноза погоды COSMO-Ru. Диссертация … канд. физ.-мат. наук.

Кузьмин, П. П. (1961). Процесс таяния снежного покрова. Ленинград: Гидрометеоиздат.

Мотовилов, Ю. Г., Гельфан, А. Н. (2018). Модели формирования стока в задачах гидрологии речных бассейнов. Москва: ИВП РАН.

Наставление гидрометеорологическим станциям и постам. (1985). Вып. 3. Ч. 1. Метеорологические наблюдения на станциях. Ленинград: Гидрометеоиздат.

Справочники по климату СССР. (1965-1974). Вып. 1-34. Ленинград: Гидрометеоиздат.

Турков, Д. В., Сократов, В. С. (2016). Расчёт характеристик снежного покрова равнинных территорий с использованием модели локального тепловлагообмена SPONSOR и данных реанализа на примере Московской области. Лёд и Снег, 56 (3), 369-380. https://doi.org/10.15356/2076-6734-2016-3-369-380

Чурюлин, Е. В. (2019). Использование спутниковой и модельной информации о снежном покрове при расчетах характеристик весеннего половодья. Диссертация … канд. геогр. наук.

Чурюлин, Е. В., Копейкин, В. Н., Розинкина, И. А., Фролова, Н. Л., Чурюлина, А. Г. (2018). Анализ характеристик снежного покрова по спутниковым и модельным данным для различных водосборов на Европейской территории Российской Федерации. Гидрометеорологические исследования и прогнозы, 2 (368), 120-143.

Arino, O., Bicheron, P., Achard, F., Latham, J., Witt, R. and Weber, J.-L. (2008). GlobCover: the most detailed portrait of Earth. European Space Agency Bulletin, (136), 24-31.

Bartalev, S. A, Ershov, D. V., Isaev, A. S., Potapov, P. V., Turubanova, S. A. and Yaroshenko, A. Yu. (2004). Russia’s Forests - Dominating Forest Types and Their Canopy Density. Moscow: Greenpeace Russia and RAS Centre for Forest Ecology and Productivity. Map. Scale 1:14 000 000.

Bellaire, S., Jamieson, J. B. and Fierz, C. (2011). Forcing the snow-cover model SNOWPACK with forecasted weather data. The Cryosphere, 5, 1115-1125. https://doi.org/10.5194/tc-5-1115-2011

Bellaire, S., van Herwijnen, A., Mitterer, C. and Schweizer, J. (2017). On forecasting wet-snow avalanche activity using simulated snow cover data. Cold Regions Science and Technology, 144, 28-38. https://doi.org/10.1016/j.coldregions.2017.09.013

Churiulin, E. V., Krylenko, I. N., Frolova, N. L. and Belyaev, B. M. (2019). Research of opportunities of combined use of the runoff formation ECOMAG model and mesoscale atmosphere circulation COSMO-Ru model (on the example of floods on the Sukhona River at the Velikiy Ustyug). IOP Conference Series: Earth and Environmental Sciences, 263 (1), 012057. https://doi.org/10.1088/1755-1315/263/1/012057

Kalinin, N. A., Shikhov, A. N. and Sviyazov, E. M. (2015). Simulation of snow accumulation and melt in the Votkinsk Reservoir catchment using the WRF-ARW model. Russian Meteorology and Hydrology, 40 (11), 749-757. https://doi.org/10.3103/S1068373915110059

Kazakova, E. V. Chumakov, M. M. and Rozinkina, I. A. (2015). The system for computing snow cover parameters for forming initial fields for numerical weather prediction based on the COSMO-Ru model. Russian Meteorology and Hydrology, 40 (5), 296-304. https://doi.org/10.3103/S1068373915050027

Kuchment, L. S., Gelfan, A. N. and Demidov, V. N. (2000). A distributed model of runoff generation in the permafrost regions. Journal of Hydrology, 240, 1-22. https://doi.org/10.1016/S0022-1694(00)00318-8

Kuchment, L. S., Romanov, Р. Yu., Gelfan, А. N. and Demidov, V. N. (2010). Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. Hydrology and Earth system sciences, 14 (2), 339-350. https://doi.org/10.5194/hess-14-339-2010

Motovilov, Yu., Gottschalk, L., Engeland, K. and Belokurov, A. (1999). ECOMAG - regional model of hydrological cycle. Application to the NOPEX region. Department of Geophysics, University of Oslo, Institute Report Series.

Pyankov, S. V., Kalinin, N. A., Shikhov, A. N., Abdullin, R. K. and Bykov, A. V. (2019). Simulation of snow cover formation and melt with publication of the output data on the web map service (on the example of Kama river basin). IOP Conference Series: Earth and Environmental Sciences, 321, 012009. https://doi.org/10.1088/1755-1315/321/1/012009

Pyankov, S. V., Shikhov, A. N., Kalinin, N. A. and Sviyazov, E. M. (2018). A GIS-based modeling of snow accumulation and melt processes in the Votkinsk reservoir basin. Journal of Geographical Sciences, 28 (2), 221-237. https://doi.org/10.1007%2Fs11442-018-1469-x

Quéno, L., Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Dumont, M. and Karbou, F. (2016). Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts. The Cryosphere, 10, 1571-1589. https://doi.org/10.5194/tc-10-1571-2016

Verbunt, M., Zappa, M., Gurtz, J. and Kaufmann, P. (2006). Verification of a coupled hydrometeorological modelling approach for alpine tributaries in the Rhine basin. Journal of Hydrology, 324, 224-238. https://doi.org/10.1016/j.jhydrol.2005.09.036

Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Quéno, L., Seity, Y. and Bazile, E. (2016). Numerical weather forecasts at kilometer scale in the French Alps: Evaluation and application for snowpack modeling. Journal of Hydrometeorology, 17 (10), 2591-2614. https://doi.org/10.1175/JHM-D-15-0241.1

wgne.meteoinfo.ru. (n. d.). WGNE Overview of Plans at NWP Centres with Global Forecasting Systems. [online] Доступно на: http://wgne.meteoinfo.ru/nwp-systems-wgne-table/wgne-table/ [Дата доступа 19.02.2021].

Published

2021-01-28

How to Cite

Shikhov, A. N., Churiulin, E. V. and Abdullin, R. K. (2021) “Assessment of the accuracy of snow water equivalent calculation with the use of global numerical weather prediction models and SnoWE snowpack model (by the example of the Kama River basin)”, Vestnik of Saint Petersburg University. Earth Sciences, 66(1). doi: 10.21638/spbu07.2021.110.

Most read articles by the same author(s)