State-of-the-art potential of the GRACE satellite mission for solving modern hydrological problems
DOI:
https://doi.org/10.21638/spbu07.2021.107Abstract
The paper presents the main results of using the GRACE mission in fields of study such as estimations of the components of basin water storage and water balance, and hydrological modeling. The estimate of error of GRACE data is in the order of 11 mm for watersheds with an area of 100 000 km2 and decreases with an increase of basin area. This accuracy made it possible to identify long-term and seasonal variability of water storage. It was shown that the decrease in total water storage in the Don basin for 2002-2019 is approximately equally caused by both soil moisture and groundwater changes. At the same time, the minimum level of groundwater was already reached in 2010; the minimum level of soil moisture - in 2015. Since 2016, Don basin groundwater changes very little during the winter period, which is likely due to the increased number of thaws and thinning of the freezing layer during this period. Based on the precipitation data from meteorological stations for the cold period of European Russia, the value of their systematic error was estimated at about 20-25 %. The comparison of the values of total water storage for the river basins of the northern part of European Russia, according to GRACE data and ECOMAG runoff modeling results, has shown their good coincidence (NSE = 0.78 ÷ 0.89). In comparison with GRACE, ECOMAG shows a smaller increase in water storage during the winter and a faster decline during the spring flood period. Currently, progress in the use of GRACE in hydrology is limited by the low spatial-temporal resolution of data, which, within the framework of the GRACE mission itself, will not be improved in the coming years. At the same time, the principle of GRACE operation can be applied in the future to various satellite constellations.
Keywords:
monitoring, space gravimetry, water resources, hydrological models
Downloads
References
Bai, P., Liu, X. and Liu, C. (2018). Improving hydrological simulations by incorporating GRACE data for model calibration. Journal of Hydrology, 557, 291-304. https://doi.org/10.1016/j.jhydrol.2017.12.025
Behrangi, A., Gardner, A. S., Reager, J. T. and Fisher, J. B. (2017). Using GRACE to constrain precipitation amount over cold mountainous basins. Geophysical Research Letters, 44, 219-227. https://doi.org/10.1002/2016GL071832
Bogdanova, E. G., Il’in, B. M. and Gavrilova, S. Yu. (2007). Advanced methods for correcting measured precipitation and results of their application in the polar regions of Russia and North America. Russian Meteorology Hydrology, 32, 229-244. https://doi.org/10.3103/S1068373907040036
Chen, J. (2019). Satellite gravimetry and mass transport in the earth system. Geodesy and Geodynamics, 10, 402-415. https://doi.org/10.1016/j.geog.2018.07.001
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer, K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R. and Förste, C. (2019). The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 11 (18), 2116. https:// doi.org/10.3390/rs11182116
Esa.int. (2020). The ESA official website. [online] Available at: https://www.esa.int/Safety_Security/Space_ Debris/Automating_collision_avoidance [Accessed Jan. 29, 2020].
Ferreira, V. G., Montecino, H. D., Yakubu, C. I. and Heck, B. (2016). Uncertainties of the gravity recovery and climate experiment time-variable gravity-field solutions based on three-cornered hat method. Journal of applied remote sensing, 10 (1), 015015. https://doi.org/10.1117/1.JRS. 10.015015
gfz-potsdam.de. (n. d.). GFZ official website. [online] Available at: https://www.gfz-potsdam.de/en/ grace/ [Accessed Feb. 22, 2021].
giovanni.gsfc.nasa.gov. (n. d.). NASA data visualization and analysis tool. [online] Available at: https:// giovanni.gsfc.nasa.gov [Accessed Feb. 22, 2021].
globalfloods.eu. (2020). Global Flood Awareness System official website. [online] Available at: https://www. globalfloods.eu/ [Accessed Feb. 22, 2021].
Golosnoy, D. A. and Krylenko, I. N. (2017). Modeling of Onega river flow based on ECOMAG software package. In: Trudy VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniia i obrazovanie: MARESEDU - 2017”. Tver: PoliPRESS Publ., 700-704. (In Russian)
gracefo.jpl.nasa.gov. (n. d.). GRACE-FO mission overview, JPL official website. [online] Available at: https:// gracefo.jpl.nasa.gov/mission/spacecraft/overview/ [Accessed Feb. 22, 2021].
Grigoriev, V. Yu. (2018). Water balance of river basins of European Russia. PhD thesis. Lomonosov Moscow State University. (In Russian)
Grigoriev, V. Yu. and Frolova, N. L. (2018). Terrestrial water storage change of European Russia and its impact on water balance. Geography, Environment, Sustainability, 11 (1), 38-50. https://doi.org/10.24057/2071-9388-2018-11-1-38-50
Humphrey, V., Gudmundsson, L. and Seneviratne, S. I. (2016). Assessing global water storage variability from GRACE: Trends, seasonal cycle, subseasonal anomalies and extremes. Surveys in Geophysics, 37 (2), 357-395. https://doi.org/10.1007/s10712-016-9367-1
ipad.fas.usda.gov. (2020). International production assessment division of US department of agriculture official website. [online] Available at: https://ipad.fas.usda.gov/cropexplorer/global_reservoir/Default.aspx [Accessed Jan. 22, 2020].
Jäggi, A., Weigelt, M, Flechtner, F., Güntner, A., Mayer-Gürr, T., Martinis, S., Bruinsma, S., Flury, J., Bourgogne, S., Steffen, H., Meyer, U., Jean, Y., Sušnik, A., Grahsl, A., Arnold, D., Cann-Guthauser, K., Dach, R., Li, Z., Chen, Q., van Dam, T., Gruber, C., Poropat, L., Gouweleeuw, B., Kvas, A., Klinger, B., Lemoine, J.-M., Biancale, R., Zwenzner, H., Bandikova, T. and Shabanloui, A. (2019). European Gravity Service for Improved Emergency Management (EGSIEM) - from concept to implementation. Geophysical Journal International, 218 (3), 1572-1590. https://doi.org/10.1093/gji/ggz238
Jiang, D. and Wang, K. (2019). The Role of Satellite-Based Remote Sensing in Improving Simulated Streamflow.: A Review. Water, 11 (8), 1615. https://doi.org/10.3390/w11081615
Khaki, M., Hoteit, I., Kuhn, M., Awange, J., Forootan, E., van Dijk, A., Schumacher, M. and Pattiaratchi, C. (2017). Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model. Advances in Water Resources, 107, 301-316. https://doi.org/10.1016/j.advwatres.2017.07.001
Krylenko, I., Motovilov, Yu., Antokhina, E., Zhuk, V. and Surkova, G. (2014). Physically-based distributed modelling of river runoff under changing climate conditions. In: Remote Sensing and GIS for Hydrology and Water Resources. IAHS Publ., 156-161.
lisa.nasa.gov. (n. d.). LISA mission official website. [online] Available at: https://lisa.nasa.gov/ [Accessed Feb. 22, 2021].
Long, D., Longuevergne, L. and Scanlon, B. R. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50 (2), 1131-1151. https://doi.org/10.1002/2013WR014581
Lorenz, C., Kunstmann, H., Devaraju, B, Tourian, M. J., Sneeuw, N. and Riegger, N. (2014). Large-Scale Runoff from Landmasses: A Global Assessment of the Closure of the Hydrological and Atmospheric Water Balances. Journal of Hydrometeorology, 15 (6), 2111-2139. https://doi.org/10.1175/JHM-D-13-0157.1
Mémin, A., Flament, T., Alizier, B., Watson, C. and Rémy, F. (2015). Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data. Earth and Planetary Science Letters, 422, 150-156. https://doi.org/10.1016/j.epsl.2015.03.045
Motovilov, Yu. G. and Gelfan, A. N. (2013). Assessing runoff sensitivity to climate change in the Arctic basin: empirical and modelling approaches. In: Proceedings of H02, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013. IAHS Publ., 360, 105-112. Available at: https://iahs.info/uploads/ dms/15555.360%20105-112.pdf [Accessed Feb. 22, 2021].
Motovilov, Yu., Gottschalk, L., Engeland, K. and Belokurov, A. (1998). ECOMAG - regional model of hydrological cycle. Application to the NOPEX region. Department of Geophysics, University of Oslo.
nasagrace.unl.edu. (n. d.). Groundwater and Soil Moisture Conditions from GRACE-FO Data Assimilation for the Contiguous U. S. and Global Land, National Drought Mitigation Center. [online] Available at: https://nasagrace.unl.edu/ [Accessed Feb. 22, 2021].
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. and Lenaerts, J. T. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38, L05503. http://dx.doi.org/10.1029/2011GL046583
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W. and Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557, 651-659. https://doi.org/10.1038/ s41586-018-0123-1
Sasgen, I., van den Broeke, M, Bamber, J. L., Rignot, E., Sørensen, L. S., Wouters, B., Martinec, Z., Velicogna, I. and Simonsen, S. B. (2012). Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303. https://doi.org/10.1016/j.epsl.2012.03.033
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., van Beek, L. P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L., Döll, P. and Bierkens, M. F. P. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. In: Proceedings of the National Academy of Sciences of USA, 115 (6), E1080-E1089. https://doi.org/10.1073/ pnas.1704665115
Seo, J. Y. and Lee, S.-I. (2017). Total discharge estimation in the Korean Peninsula using multi-satellite products. Water, 9 (7), 532. https://dx.doi.org/10.3390/w9070532
Swenson, S. (2010). Assessing High-Latitude Winter Precipitation from Global Precipitation Analyses Using GRACE. Journal of Hydrometeorology, 11, 405-420. https://doi.org/10.1175/2009JHM1194.1
Tangdamrongsub, N., Steele-Dunne, S. C., Gunter, B. C., Ditmar, P. G., Sutanudjaja, E. H., Sun, Y., Xia, T. and Wang, Z. (2017). Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrology and Earth System Sciences, 21 (4), 2053- 2074. https://doi.org/10.5194/hess-21-2053-2017
Thespacereview.com. (2020). Publication devoted to cdzspace exploration. [online] Available at: https://www. thespacereview.com/article/3849/1 [Accessed Jan. 22, 2020].
Tian, S., Tregoning, P., Renzullo, L. J., van Dijk, A., Walker, J. P., Pauwels, V. R. N. and Allgeyer, S. (2017). Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resources Research, 53 (3), 1820-1840. https://doi. org/10.1002/2016WR019641
Vishwakarma, B. D., Devaraju, B. and Sneeuw, N. (2018). What Is the Spatial Resolution of GRACE Satellite Products for Hydrology? Remote Senssing, 10 (6), 852. https://doi.org/10.3390/rs10060852
Wahr, J., Molenaar, M. and Bryan, F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103 (B12), 30205-30229. https://doi.org/10.1029/98JB02844
Wahr, J., Swenson, S., Zlotnicki, V. and Velicogna, I. (2004). Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31, 293-317. https://doi.org/10.1029/2004GL019779
Wang, L., Chen, C., Ma, X., Fu, Z., Zheng, Y. and Peng, Z. (2020). Evaluation of GRACE mascon solutions using in-situ geodetic data: The case of hydrologic-induced crust displacement in the Yangtze River Basin. Science of the Total Environment, 707, 135606. https://doi.org/10.1016/j.scitotenv.2019.135606
Wilby, R. (2019). A hydrology research agenda fit for the 2030s. Hydrology Research, 50, 1464-1480. https://doi.org/10.2166/nh.2019.100
Xu, T., Guo, Z. X., Xia, Y. L., Ferreira, V. G., Liu, S. M., Wang, K. C., Yao, Y., Zhang, X. and Zhao, C. (2019). Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578, 124105. https://doi. org/10.1016/j.jhydrol.2019.124105
Zotov, L. V., Frolova, N. L., Grigor’yev, V. Yu. and Kharlamov, M. A. (2015). Application of the satellite system of the earth’s gravity field measurement (GRACE) for the evaluation of water balance in river catchments. Vestnik Moskovskogo Universiteta. Seria 5, Geografia, (4), 27-33. (In Russian)
Zotov, L., Shum, C. and Frolova, N. (2015). Gravity changes over Russian rivers basins from GRACE. In: S. Jin, N. Haghighipour, W. Ip, ed., Planetary Exploration and Science: Recent Results and Advances. Berlin: Springer Geophysics. Springer-Verlag Berlin Heidelberg, 45-59. https://doi.org/10.1007/978-3-662-45052-9
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.