On the relation of bottom valley-type reservoir hydrocarbon carbon flux and hydrological structure of water body

Authors

  • Diana V. Lomova Institute of Water Problems of the Russian Academy of Sciences, 3, ul. Gubkina, Moscow, 119333, Russian Federation https://orcid.org/0000-0001-7619-5332
  • Ekaterina R. Kremenetskaya Institute of Water Problems of the Russian Academy of Sciences, 3, ul. Gubkina, Moscow, 119333, Russian Federation https://orcid.org/0000-0001-6116-5202
  • Maria G. Grechushnikova Institute of Water Problems of the Russian Academy of Sciences, 3, ul. Gubkina, Moscow, 119333, Russian Federation; Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation https://orcid.org/0000-0001-6376-2473
  • Ludmila E. Efimova Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation https://orcid.org/0000-0003-2733-9680
  • Viktor A. Lomov Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation https://orcid.org/0000-0001-5275-390X

DOI:

https://doi.org/10.21638/spbu07.2021.104

Abstract

Circulation of carbon in water bodies is a fundamental process of the nutrient cycle in water ecosystems. Carbon flux from bottom sediments is currently the least studied chain of this circulation. The aim of this investigation was the study of HCO3 flux from bottom sediments in the valley-type reservoir and identification of their relationship with the hydrological structure of the water column. Fieldwork and laboratory experiments were conducted at the Mozhaisk reservoir in 2017-2019. These years differed in weather conditions, level regime and stability of water masses. Hydrological surveys were conducted three times during the summer period of each year. They included measuring the vertical distribution of hydrological characteristics and sampling of water and bottom sediments. The Kuznetsov-Romanenko tube method was used to study exchange processes. Hydrocarbonate carbon flux from sediments into the water may range widely (50-900 mgC/m2day). By comparing HCO3 flux with the hydrological structure of the water column, it was revealed that in deep (> 8 m) areas, the release of HCO3 depends on the stratification and thickness of the uniform hypolymnion, where seiches and compensation currents may promote transsedimentation from shallow places to the flooded river bed. In areas with a depth of < 8 m, hydrocarbonate carbon flux from sediments depends much more on the autochthonic organic matter produced by phytoplankton. The relationship between HCO3 flux and the content of organic matter in the soil and its hygroscopic humidity is insignificant.

Keywords:

bottom sediments, hydrocarbonate carbon flux, stratification, reservoir

Downloads

Download data is not yet available.
 

References

Винберг, Г. Г. (1960). Первичная продукция водоемов. Минск: Изд-во АН БССР.

Дзюбан, А. Н. (2010). Деструкция органического вещества и цикл метана в донных отложениях внутренних водоемов. Ярославль: Принтхаус.

Комплексные исследования водохранилищ. Т. 3. (1979). Москва: Изд-во Московского университета.

Кременецкая, Е. Р., Бреховских, В. Ф., Вишневская, Г. Н., Ломова, Д. В., Перекальский, В. М., Соколов, Д. И. (2013). Влияние стратификации на седиментационные потоки в долинном водохранилищ. Вестник РФФИ, 2 (78), 51-56.

Кременецкая, Е. Р., Ломова, Д. В., Соколов, Д. И., Ломов, В. А. (2018). Количественная оценка потоков органического вещества в донные отложения стратифицированного водохранилища долинного типа. Вода: химия и экология, 7 (9), 39-46.

Ломова, Д. В., Гречушникова, М. Г., Вишневская, Г. Н., Кременецкая, Е. Р., Ефимова, Л. Е., Соколов, Д. И. (2016). Внутриводоемные процессы в водохранилищах различного возраста. Метеорология и гидрология, 12, 63-74.

Мартынова, М. В. (2010). Донные отложения как составляющая лимнических экосистем. Москва: Наука.

Мартынова, М. В. (2014). Железо и марганец в пресноводных отложениях. Москва: Институт водных проблем РАН.

Мартынова, М. В., Козлова, Е. И. (1987). Фосфор в отложениях двух высокоэвтрофных озер. Водные ресурсы, (2), 103-112.

Мартынова, М. В., Шмидеберг, Н. А. (1973). О химическом составе илов Можайского водохранилища. В: Комплексные исследования водохранилищ. Т. 2. Москва: Изд-во Московского университета, 125-133.

Anderson, L. G., Hall, P. O. J. and Iverfeldt, A. (1986). Benthic respiration measured by total carbonate production. Limnology and Oceanography, 31 (2), 319-329.

Elrod, V., Berelson, W., Coale, K. and Johnson, K. (2004). The flux of iron from continental schelf sediments: a missing sourse of global budgets. Geophysical Research Letters, 31, 7-37. https://doi.org/10.1029/2004GL020216

Golterman, H. L. (1975). Physiological limnology. Vol. 2. An approach to the physiology of lake ecosystems. Amsterdam: Elsevier Science.

Sweerts, J., Bar-Gilissen, M., Cornelse, A. and Cappenberg, T. (1991). Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake. Limnology and Oceanography, 36 (6), 1124-1133.

Published

2021-01-28

How to Cite

Lomova, D. V. (2021) “On the relation of bottom valley-type reservoir hydrocarbon carbon flux and hydrological structure of water body”, Vestnik of Saint Petersburg University. Earth Sciences, 66(1). doi: 10.21638/spbu07.2021.104.