The quality of the reproduction of El Nino and La Nina events using different reconstructed sea surface temperature data sets

Authors

  • Olesia V. Marchukova Institute of natural and technical systems, 28, ul. Lenina, Sevastopol, 299011, Russian Federation
  • Andrey S. Lubkov Institute of natural and technical systems, 28, ul. Lenina, Sevastopol, 299011, Russian Federation
  • Elena N. Voskresenskaya Institute of natural and technical systems, 28, ul. Lenina, Sevastopol, 299011, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2020.106

Abstract

In this paper, using various data sets of the reconstructed ocean surface temperature — HadISST, COBE SST2 and ERSSTv5 — the differences are showed in the identification of El Niño and La Niña events with their subsequent separation on the East Pacific (EP) and Central Pacific (CP) types from 1870 to 2018. The SST data of the TOGA-TAO buoys from 1981 to 2018, the Terra satellite (MODIS) from 2001 to 2018 and the NOAA IO SSTv2 from 1982 to 2018 were used for a verification of the quality of SST reconstructions in the equatorial Pacific. The obtained results in this work demonstrate differences in the number of EP and CP types of El Niño and La Niña for the early period from 1870 to 1900, when the data were less reliable, and for the entire time series, including the last two decades. According to the study results, it was shown that ERSSTv5 overestimates the number of CP El Niño by 42,8 % relative to HadISST and by 28,6 % relative to COBE SST2 and underestimates the number of EP El Niño by 23,8 % relative to HadISST and by 20 % relative to COBE SST2. The choice between the COBE SST2 and HadISST data sets as a result of comparing of the selected El Niño and La Niña events showed the possibility to use of both arrays is almost equivalent. 

Keywords:

La Niña, El Niño, sea surface temperature, Pacific Ocean, El Niño — Southern Oscillation

Downloads

Download data is not yet available.
 

References

Ashok, K., Behera, S. K., Rao, S. A., Weng, H., Yamagata T. (2007). El Nino Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007. https://doi.org/10.1029/2006JC003798

Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J.-Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.-F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., Yeh, S.-W. (2015). Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1

Diamond, M. S., Bennartz, R. (2015). Occurrence and trends of eastern and central Pacific El Niño in different reconstructed SST data sets. Geophysical Research Letters, 42, 375–381. https://doi.org/10.1002/2015GL066469

Enfield, D. B., Mestas-Nunez, A. M. (1999). Multiscale Variabilities in Global Sea Surface Temperatures and Their Relationships with Tropospheric Climate Patterns. Journal of Climate, 12, 2719–2733. https://doi.org/10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2

Folland, C. K., Parker, E. (1995). Correction of instrumental biases in historical sea surface temperature data. Quarterly Journal of the Royal Meteorological Society, 121, 319–367. https://doi.org/10.1002/qj.49712152206

Giese, B. S., Slowey, N. C., Ray, S., Compo, G. P., Sardeshmukh, P. D., Carton, J. A., Whitaker, J. S. (2010). The 1918/19 El Niño. Bull. Amer. Meteor. Soc., 91, 177–183. https://doi.org/10.1175/2009BAMS2903.1

Glantz, M. H. (2015). Shades of Chaos: Lessons Learned About Lessons Learned About Forecasting El Nino and Its Impacts. Int. J. Disaster Risk Sci., 6, 94–103. https://doi.org/10.1007/s13753-015-0045-6

Goddard, L., Dilley, M. (2005). El Niño: Catastrophe or opportunity. Journal of Climate, 18, 651–665. https://doi.org/10.1175/JCLI-3277.1

Hirahara, S., Ishii, M., Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27, 57–75. https://doi.org/10.1175/JCLI-D-12-00837.1

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., Zhang, H.-M. (2017). Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons. Journal of Climate, 30, 8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1

Ishii, M., Shouji, A., Sugimoto, S., Matsumoto, T. (2005). Objective Analyses of Sea-Surface Temperature and Marine Meteorological Variables for the 20th Century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879. https://doi.org/10.1002/joc.1169

Kao, H. Y., Yu, J. Y. (2009). Contrasting eastern Pacific and central Pacific types of ENSO. Journal of Climate, 22, 615–632. https://doi.org/10.1175/2008JCLI2309.1

Kug, J. S., Jin, F. F., An, S. I. (2009). Two types of El Nino events: Cold tongue El Nino and warm pool El Nino. Journal of Climate, 22, 1499–1515. https://doi.org/10.1175/2008JCLI2624.1

Laken, B., Calogovic, J. (2013). Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. Journal of Space Weather and Space Climate, 3, A29. https://doi.org/10.1051/swsc/2013051

Lee, T., McPhaden, M. J. (2010). Increasing intensity of El Nino in the central-equatorial Pacific. Geophysical Research Letters, 37, L14603. https://doi.org/10.1029/2010GL044007

Lubkov, A. S., Voskresenskaya, E. N., Marchukova, O. V. (2017). Modern classification of El Nino and comparison of the corresponding climate responses. Sistemy kontrolia okruzhaiushchei sredy, 7(27), 94–100. (In Russian)

McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T. (1998). The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. Journal of Geophysical Research, 103, 169–240. https://doi.org/10.1029/97jc02906

McPhaden, M. J. (1995). The Tropical Atmosphere Ocean (TAO) Array is Completed. Bulletin of the American Meteorological Society, 76(5), 739–741. https://doi.org/10.1175/1520-0477-76.5.739

Pascolini-Campbell, M., Zanchettin, D., Bothe, O., Timmreck, C., Matei, D., Jungclaus, J. H., Graf, H.-E. (2015). Toward a record of central Pacific El Niño events since 1880. Theoretical and Applied Climatology, 119, 379–389. https://doi.org/10.1007/s00704-014-1114-2

Philander, S. G. (1990). El Niño, La Niña and the Southern Oscillation. CA, San Diego: Academic Press.

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K. Alexander, L. V., Rowell, D. P., Kent, E. C., Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670

Ren, R. C., Rao, J., Wu, G. X., Cai, M. (2017). Tracking the delayed response of the northern winter strat-osphere to ENSO using multi reanalyses and model simulations. Climate Dynamics, 48, 2859–2879. https://doi.org/10.1007/s00382-016-3238-9

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., Wang, W. (2002). An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609–1625. https://doi.org/10.1175/1520-0442(2002)015,1609:AIISAS.2.0.CO;2

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G. (2007). Daily High-Reso-lution-Blended Analyses for Sea Surface Temperature. Journal of Climate, 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1

Singh, A., Delcroix, T., Cravatte, S. (2011). Contrasting the flavors of El Nino — Southern Oscillation using sea surface salinity observations. Journal of Geophysical Research, 116, 148–227. https://doi.org/10.1029/2010JC006862

Smith, T. M., Reynolds, R. W., Peterson, T. C., Lawrimore, J. (2008). Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). Journal of Climate, 21, 2283–2296. https://doi.org/10.1175/2007jcli2100.1

Smith, T. M., Reynolds, R. W. (2003). Extended reconstruction of global sea surface temperature based on COADS data (1854–1997). Journal of Climate, 16, 1495–1510. https://doi.org/10.1175/1520-0442-16.10.1495

Smith, T. M., Reynolds, R. W., Livezey, R. E., Stokes, D. C. (1996). Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate, 9, 1403–1420. https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2

Takahashi, K., Montecinos, A., Goubanova, K., Dewitte, B. (2011). ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704. https://doi.org/10.1029/2011GL047364

van den Dool, H. M., Saha, S., Johansson, A. (2000). Empirical orthogonal teleconnections. Journal of Climate, 13, 1421–1435. https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2

Voskresenskaya, E. N., Marchukova, O. V. (2017). Spatial classification of La Nina events. Izvestiya, Atmospheric and Oceanic Physics, 53, 111–119. https://doi.org/10.1134/S0001433817010133

Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Freeman, J. E., Berry, D. I., Brohan, P., Kent, E. C., Reynolds, R. W., Smith, S. R., Wilkinson, C. (2011). ICOADS release 2.5: Extensions and enhancements to the surface marine meteorological archive. The International Journal of Climatology, 31, 951–967. https://doi.org/10.1002/joc.2103

Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., Jin F.-F. (2009). El Niño in a changing climate. Nature, 461, 511–514. https://doi.org/10.1038/nature08316

Yu, J.-Y., Kim, S. T. (2013). Identifying the Types of Major El Niño Events since 1870. International Journal of Climatology, 33, 2105–2112. https://doi.org/10.1002/joc.3575

Yuan, Y., Yan, H. M. (2013). Different types of La Nina events and different responses of the tropical atmosphere. Chinese Science Bulletin, 58, 406–415. https://doi.org/10.1007/s11434-012-5423-5

Zhang, W., Wang, L., Xiang, B., Qi, L., He, J. (2014). Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 44, 1351–1366. https://doi.org/10.1007/s00382-014-2155-z

Zheleznova, I. V., Gushchina, D. Yu. (2016). Circulation anomalies in the atmospheric centers of action during the Eastern Pacific and Central Pacific El Niño. Russian Meteorology and Hydrology, 41, 760–769. https://doi.org/10.3103/S1068373916110030

Published

2020-05-29

How to Cite

Marchukova, O. V. ., Lubkov, A. S. . and Voskresenskaya, E. N. . (2020) “The quality of the reproduction of El Nino and La Nina events using different reconstructed sea surface temperature data sets”, Vestnik of Saint Petersburg University. Earth Sciences, 65(1). doi: 10.21638/spbu07.2020.106.

Issue

Section

Articles