A new approach in physical modeling for velocity anisotropy study

Authors

  • Дмитрий Андреевич Попов St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Татьяна Иннокентьевна Чичинина Instituto Mexicano del Petroleo, Mexico City, Mexico, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, Ciudad de México. C.P. 07730
  • Вячеслав Владимирович Половков St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Ирина Олеговна Корсакова St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Pinbo Ding China University of Petroleum, Qingdao, China, No. 66, Changjiang West Road, Huangdao District, 266580
  • Борис Маркович Каштан St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Владимир Николаевич Троян St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2019.305

Abstract

Special automated equipment is constructed for ultrasonic velocity measurements at various incidence angles of waves that is necessary for estimation of anisotropy parameters of rocks. The equipment includes hydraulic press for simulation of vertical pressure in the Earth, at a range up to 40 MPa and computer controlled positioning system that provides precise independent positioning of ultrasonic source and receiver. This setup enables us to perform reliable velocity measurements at the angle interval from 15° to 90° and additional single measurement at 0°. The minimum step of a transducer position in 15°-90° range is 8.1'. As an example on anisotropy study, we perform physical modeling of wave propagation in artificial sample of transversely isotropic (TI) symmetry, which represents a model of fractured rock. Using experimental setup, we acquire P-wave velocity data for plate-stack model with vertical axis of symmetry formed by acrylic 1 mm thick sheet plates. Using measured velocities, we estimate Thomsen’s anisotropy parameters ε and δ, and get dependence between the velocity of P-waves and symmetry axis of the model. . In our oncoming research, the upgraded Ultrasonic Measuring System will be supplemented by multicomponent transducers similar to those described in Chichinina et al. (2009), which allow simultaneous recording of P, SV and SH waves at each data point.

Keywords:

seismic, anisotropy, physical modeling, anisotropy parameters, linear-slip model, Schoenberg’s model, VTI

Downloads

Download data is not yet available.
 

References


References

Chichinina, T. I., 2017. Physical constraints on C13 for transversely isotropic shales and their applications. Geophysics, 82 (4), 105–118. https://doi.org/10.1190/geo2016-0656.1

Chichinina, T. I., Obolentseva, I. R., Dugarov,G., 2015. Effective-medium anisotropic models of fractured rocks of TI symmetry. Analysis of constraints and limitations in linear slip model. In:85th Annual International Meeting, SEG, New Orleans, 421–426. https://doi.org/10.1190/ segam2015-5882173.1

Chichinina, T. I., Obolentseva, I. R., Ronquillo-Jarillo, G., Sabinin, V. I., Gik, L. D., Bobrov, B. A., 2007. Attenuation anisotropy of P- and S-waves: Theory and laboratory experiment. Journal of Seismic Exploration 16, 235–264.

Chichinina, T. I., Obolentseva, I. R., Gik, L. D., Bobrov, B. A., Ronquillo-Jarillo, G., 2009. Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data. Geophysics 74 (5), 165–176. https://doi.org/10.1190/1.3173806

Far, M., 2011. Seismic characterization of naturally fractured reservoirs, PhD. thesis. Houston.

Far, M., Figueiredo, J. J. S., Stewart, R. R., Castagna, J. P., Han, D.-H., Dyaur, N., 2014. Measurements of seismic anisotropy and fracture compliances in synthetic fractured media. Geophysical Journal International 197, 1845–1857. https://doi.org/10.1093/gji/ggu101

Gik, L. D., Bobrov, B. A., 1996. Experimental laboratory study of anisotropy for fine-layered media. Geology and Geophysics 37, 97–110. (In Russian)

Hsu, C.-J., Schoenberg, M., 1993. Elastic waves through a simulated fractured medium. Geophysics 58, 964–977. https://doi.org/10.1190/1.1443487

Hudson, J. A., 1980. Overall properties of a cracked solid. Mathematical Proceedings of the Cambridge Philosophical Society 88, 371–384. https://doi.org/10.1017/S0305004100057674

Polovkov, V. V., Popov, D. A., Musin, M. V., Dzemchuzhnikov, E. G., 2015. Physical modelling in exploration seismology: Reasonability, limitations and perspectives of the method. In: Geomodel-2015. Gelendzhik (In Russian)

Popov, D. A., Musin, M. V., Molodtsov, D. M., 2015. A hardware-software complex for physical seismic ultrasound modeling. Tekhnologii seismorazvedki 2, 113–118. http://dx.doi.org/10.18303/1813-4254-2015-2-113-118. (In Russian)

Sarout, J., Delle-Piane, C., Nadri, D., Esteban, L., Dewhurst, D. N., 2015. A robust experimental determination of Thomsen’s δ parameter. Geophysics 80 (1), 19–24. https://doi.org/10.1190/geo2014-0391.1

Schoenberg, M., 1980. Elastic wave behavior across linear slip interfaces. Journal of Acoustical Society of America 68, 1516–1521. https://doi.org/10 .1121/1.385077

Schoenberg, M., 1983. Reflection of elastic waves from periodically stratified media with interfacial slip. Geophysical Prospecting 31, 265–292. https://doi.org/10.1111/j.1365-2478.1983.tb01054.x

Schoenberg, M., Sayers, C. M., 1995. Seismic anisotropy of fractured rock. Geophysics 60, 204–211. https://doi.org/10.1190/1.1443748

Thomsen, L., 1986. Weak elastic anisotropy. Geophysics 51, 1954–1966. https://doi.org/10.1190/1.1442051

Thomsen, L., 2002. Understanding seismic anisotropy in exploration and exploitation. 2002 Distinguished Instructor Short Course, Distinguished Instructor Series 5. SEG, Tulsa.

Vernik, L., 2016. Seismic petrophysics in quantitative interpretation. Investigations in Geophysics 18. SEG, Tulsa.

Yan, F., Han, D.-H., Yao, Q., 2016. Physical constraints on c13 and δ for transversely isotropic hydrocarbon source rocks. GeophysicalProspecting 64, 1524–1536. https://doi.org/10.1111/1365-2478.12265

Published

2019-07-20

How to Cite

Попов, Д. А. (2019) “A new approach in physical modeling for velocity anisotropy study”, Vestnik of Saint Petersburg University. Earth Sciences, 64(3). doi: 10.21638/spbu07.2019.305.

Issue

Section

Articles