Study of seismic wave fields in the reservoir zones by the numerical simulation

Authors

  • Alexander A. Kovtun St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Eugenia L. Lyskova St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Konstantin Yu. Sannikov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2020.103

Abstract

This paper presents a study of seismic wave fields in reservoir zones by numerical simulation. In the first part of the study, numerical modeling of full wavefield was performed to synthesize the multi-offset vertical profiling data and data of OPV (Common Source Point Technique) for the model of the medium in which high-velocity layers (seal and collector) are placed in a low-velocity containing medium. It has been established that the principal boundary, the roof of the collector, can be distinguished by data only in the case of great thickness of high-velocity seal from the field of converted P1S2S2P1 and P1S2S21 waves. These waves are formed on the roof of the seal during the passage of a converted transverse wave and exist only in a certain interval of epicentral distances from the source, the length of which depends on the contrast of the
high-velocity seal, as well as on its thickness and depth. Reliable determination of the boundary between the high-velocity seal and the collector can be difficult when using only ground-based seismic data due to the screening effect. However, it becomes possible with the use of multi-offset vertical profiling materials and the correct use of the data of reflected converted P1S2S2P1 and P1S2S21 waves. In the second part of the work, we analyze the results of numerical model studies of the full-wave seismic response from a thin-layered pack of saturated elastic porous Biot layers simulating a reservoir zone. The results of numerical model studies show that the low-frequency amplitude anomalies observed in seismic sections below the reservoir zone may be caused by the formation of a field of reflected converted transverse waves that are delayed relative to the response of the longitudinal wave and having significant amplitudes on the vertical field component for the small and middle offsets. The amplitudes and time delays of the total converted transverse wave can vary widely depending on specific conditions: depth and reservoir thickness, incident longitudinal wave frequency, the presence of boundaries in the reservoir area with sliding contact or extended thin cracks filled with fluid, and other factors. 

Keywords:

numerical modeling, seismic wave fields, collector, screening effect, Biot layers

Downloads

Download data is not yet available.
 

References

Голикова, Г. В., Дараган-Сущова, Л. А., Ковтун, Ал. А., Лыскова, Е. Л., Санников, К. Ю. (2016а). Особенности сейсмического волнового поля в северной части Баренцева моря по результатам численного моделирования. Региональная геология и металлогения , 67, 70–78.

Голикова, Г. В., Ковтун, А. А., Лыскова, Е. Л., Санников, К. Ю. (2016б). Влияние слоев высокой скорости на формирование сейсмических волновых полей. Технологии сейсморазведки , 4, 33−44. https://doi.org/10.18303/1813-4254-2016-4-33-44

Голикова, Г. В., Ковтун А. А., Решетников, В. В. (2006). Численные исследования интерференционных волновых полей в слоистых средах, содержащих границы разделов с контактом проскальзывания. Вопросы геофизики. Выпуск 39. (Ученые записки СПбГУ; No 439), 20–37.

Голошубин, Г. М., Силин, Д. Б., Баюк, И. О. (2015). Продольные сейсмические волны в проницаемых средах: асимптотическое представление. Технологии сейсморазведки , 4, 15–22. https://doi.org/10.18303/1813-4254-2015-4-15-22

Левянт, В. Б., Хромова, И. Ю., Козлов, Е. А., Керусов, И. Н., Кащеев, Д. Е., Колесов, В. В., Мармалевский, Н. Я. (2010). Методические рекомендации по использованию данных сейсморазведки для подсчета запасов углеводородов в условиях карбонатных пород с пористостью трещинно-кавернозного типа. Москва: ЦГЭ.

Молотков, Л. А. (2001). Исследование распространения волн в пористых и трещиноватых средах на основе эффективных моделей Био и слоистых сред. Санкт-Петербург: Наука.

Ahmad, S. S., Brown, R. J., Escalona, A., Rosland, B. O. (2017). Frequency-dependent velocity analysis and offset-dependent low-frequency amplitude anomalies from hydrocarbon-bearing reservoirs in the southern North Sea, Norwegian sector. Geophysics, 82(6), N51–N60. https://doi.org/10.1190/GEO2016-0555.1

Barenblatt, G. I., Zheltov, I. P., Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24, 1286–1303.

Biot, M. A. (1962). Generalized theory of acoustic propagation in porous dissipative media. J. Acoust. Soc. Amer., 34(5), 1254–1264.

Bruvoll, V., Kristoffersen, Y., Coakley, B. J., Hopper, J. R., Planke, S., Kandilarov, A. (2012). The nature of acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean. Tectonophysics, 514–517, 123–145. https://doi.org/10.1016/j.tecto.2011.10.015

Chabyshova, E., Goloshubin, G. (2014). Seismic modeling of low-frequency “shadows” beneath gas reservoirs. Geophysics, 79(6), D417–D423.https://doi.org/10.1190/geo2013-0379.1

Krauklis, P., Goloshubin, G., Krauklis L. (1996). A slow wave in a fluid layer simulating an oil-saturated seam. Journal of Mathematical Sciences, 79(4), 1224–1230. https://doi.org/10.1007/BF02362888

Muller, T., Gurevich, B., Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks — review. Geophysics , 75(5), 75A147–75A164. https://doi.org/10.1190/1.3463417

Schmidt, H. (2004). OASES Version 3.1. User Guide and Reference Manual. Department of Ocean Engineering Massachusetts Institute of Technology.

Published

2020-05-28

How to Cite

Kovtun, A. A. ., Lyskova, E. L. . and Sannikov, K. Y. . (2020) “Study of seismic wave fields in the reservoir zones by the numerical simulation”, Vestnik of Saint Petersburg University. Earth Sciences, 65(1). doi: 10.21638/spbu07.2020.103.

Issue

Section

Articles