Field testing of a portable vibration seismic source of S-waves for detailed near-surface studies

Authors

  • Petr A. Dergach Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation
  • Alexandr V. Yablokov Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation
  • Stanislav S. Polozov Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation
  • Gleb Yu. Zobnin Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation
  • Anton A. Duchkov Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2024.202

Abstract

We report the results of testing a portable vibration seismic source designed for generating S-waves in the frequency range from 5 to 200 Hz (designed at the Institute of Petroleum Geology and Geochemistry SB RAS based on serial low-frequency acoustic transducers). We first describe the source design and then present the results of field experiments and their comparison to the impulse source of S-waves (sledgehammer against the opposite walls of a trench). Analysis of experimental data showed that even with an average noise level (constant wind of 5–10 m/s and construction work at a distance of about 200 meters from the profile) it is possible to reliably trace refracted waves at distances of up to 100 meters or more with a signal-to-noise ratio of 5 or higher. We used 60-second linear sweep signal with a frequency changing from 20 to 100 Hz. The source of shear waves can be used in near-surface seismic studies using the methods of refracted waves, multichannel analysis of surface Love waves (MALW), as well as reflected SH waves (RPM). The last two methods are important for studying geological sections with velocity inversions with depth which is extremely important when working in permafrost regions since the refracted wave method (REM) is not effective in this case. The use of the vibration S-wave source may significantly suppress surface waves.

Keywords:

Near-surface seismic, vibration source, shear waves, refracted wave method, low-frequency acoustic transducer, sweep signal

Downloads

Download data is not yet available.
 

References

Кострыгин, Ю. П. (1990). Сейсморазведка на сложных зондирующих сигналах. М.: Недра.

Никитин, А. А., Дучков, А. А., Кулаков, И. Ю., Чернышов, Г. С. (2020). ST3D: Свидетельство о государственной регистрации программы для ЭВМ.

Чичинин, И. С. (1965). Вопросы теории сейсмического виброзондирования. В: И. С. Чичинин, ред., Методика сейсморазведки. М.: Наука, 147–163.

Шнеерсон, М. Б. и Майоров, В. В. (1980). Наземная сейсморазведка с невзрывными источниками колебаний, М.: Недра.

Brodic, B., De Kunder, R., Ras, P., Van den Berg, J., Malehmir, A. (2019,). Seismic imaging using electromagnetic vibrators-Storm versus Lightning. In 25th European Meeting of Environmental and Engineering Geophysics. Vol. 2019, no. 1, September, 1–5. European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201902406

Crawford, J. M., Doty, W. E., & Lee, M. R. (1960). Continuous signal seismograph. Geophysics, 25 (1), 95–105. https://doi.org/10.1190/1.1438707

Dean, T., Nguyen, H., Kepic, A., Halliday, D. (2019). The construction of a simple portable electromagnetic vibrator from commercially available components. Geophysical Prospecting, 67 (6-Geophysical Instrumentation and Acquisition), 1686–1697. https://doi.org/10.1111/1365-2478.12645

Dergach, P. A., Tubanov, T. A., Yushin, V. I., Duchkov, A. A. (2019). Features of software implementation of low-frequency deconvolution algorithms. Seismic Instruments, 55, 345–352. https://doi.org/10.3103/S0747923919030046

Melnikov, V. P., Skvortsov, A. G., Malkova, G. V., Drozdov, D. S., Ponomareva, O. E., Sadurtdinov, M. R., Tsarev A.M., Dubrovin, V. A. (2010). Seismic studies of frozen ground in Arctic areas. Russian Geology and Geophysics, 51 (1), 136–142. https://doi.org/10.1016/j.rgg.2009.12.011

Nikitin, A. A., Serdyukov, A. S., Duchkov, A. A. (2018). Cache-efficient parallel eikonal solver for multicore CPUs. Computational Geosciences, 22, 775–787. https://doi.org/10.1007/s10596-018-9725-9

Park, C. B., Miller, R. D., Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64 (3), 800–808. https://doi.org/10.1190/1.1444590

Pugin, A. M., Brewer, K., Cartwright, T., Pullan, S. E., Perret, D., Crow, H., Hunter, J. A. (2013). Near surface S-wave seismic reflection profiling–new approaches and insights. First Break, 31 (2). https://doi.org/10.3997/1365-2397.2013005

Rozemond, H. J. (1996). Slip-sweep acquisition. In SEG Technical Program Expanded Abstracts 1996. Society of Exploration Geophysicists, 64–67 https://doi.org/10.1190/1.1826730

Yablokov, A. V., Dergach, P. A., Serdyukov, A. S., Polozov, S. S. (2022). Development and Application of a Portable Vibroseis Source for Acquisition and Analysis of Seismic Surface Wave Data. Seismic Instruments, 58 (Suppl 2), S195–S203. https://doi.org/10.3103/S074792392208014X

Yablokov, A. V., Serdyukov, A. S., Loginov, G. N., Baranov, V. D. (2021). An artificial neural network approach for the inversion of surface wave dispersion curves. Geophysical Prospecting, 69 (7), 1405–1432. https://doi.org/10.1111/1365-2478.13107

Published

2024-07-08

How to Cite

Dergach, P. A. (2024) “Field testing of a portable vibration seismic source of S-waves for detailed near-surface studies”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.202.

Issue

Section

Articles