Criteria for mapping and estimation root systems using ground penetrating radar by the example of the European spruce

Authors

  • Pavel А. Ryazantsev Department of Multidisciplinary Scientific Research of the Karelian Research Centre of the Russian Academy of Sciences, 11, ul. Pushkinskaya, Petrozavodsk, 185910, Russian Federation
  • Aleksey V. Kabonen Petrozavodsk State University, 33, pr. Lenina, Petrozavodsk, 185910, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2024.203

Abstract

This study discusses about approaches to using ground penetrating radar (GPR) techniques to characterize tree roots and to monitor their conditions in urban environments. For this purpose, our research was to map and determine the reliability of the root system of trees evaluating in their natural occurrence using the GPR method. As an object of research, a separate European spruce (Picea abies (L.) H. Karst.) was selected, under which a testing area measuring 4×4 m was laid. To increase the detail, the field survey was performed with a GPR with a high-frequency antenna unit of 1,700 MHz. The influence of the observation networks on the GPR data on root architectonics was analyzed depending on their spatial orientation. Thus, surveying along a rectangular and diagonal network with a step of 25 cm showed different number diffraction hyperbolas. They were markers of separate roots. A pattern of distribution of diffraction hyperbolas in depth was discovered, corresponding to the growth characteristics of the tree under study. To verify the data, a complete excavation of spruce roots was conducted with a detailed manual description. In particular, it has been established that large roots have characteristic GPR patterns that can be traced on a series of parallel profiles. The reflected signal for the roots was analyzed and the relationship between their diameter and the length of the wave train was shown with a correlation coefficient of r = 0.87. Based on a survey of European spruce, GPR data made it possible to restore the root architecture in situ and determine criteria for searching for the largest coarse roots. Although there are problems associated with parameterization of roots, the results got show the possibility of obtaining new information about the structure and functioning of tree root systems.

Keywords:

GPR attributes, hyperbola, cross-sections network, root architectonics, root diameter, correlation

Downloads

Download data is not yet available.
 

References

Владов, М. Л. и Судакова, М. С. (2017). Георадиолокация: от физических основ до перспективных направлений: учеб. пособие. М.: ГЕОС.

Демидов, И. Н. и Лукашов, А. Д. (2001). Рельеф и четвертичные отложения ботанического сада петрозаводского государственного университета как основа его современных ландшафтов. Hortus Botanicus, 1, 25–33.

Калинин, М. И. (1991). Корневедение. М.: Экология.

Колесников, В. А. (1972). Методы изучения корневой системы древесных растений. 2-е изд. М.: Лесная промышленность.

Рязанцев, П. А., Кабонен, А. В., Родионов, А. И. (2020). Определение архитектоники корневой системы деревьев методом георадиолокации. Вестник Томского государственного университета. Биология, 51, 179–204. https://doi.org/10.17223/19988591/51/10

Alani, A. M. and Lantini, L. (2020). Recent Advances in Tree Root Mapping and Assessment Using Non-destructive Testing Methods: A Focus on Ground Penetrating Radar. Surveys in Geophysics. 2020, 41, 605–646. https:.doi.org/10.1007/s10712-019-09548-6

Allred, B. J., Daniels, J. J., Ehsani, M. R., eds (2008). Handbook of Agricultural Geophysics. Boca Raton: CRC Press.

Altdorff, D., Botschek, J., Honds, M., van der Kruk, J. (2019). In situ detection of tree root systems under heterogeneous anthropogenic soil conditions using ground penetrating radar. Journal of Infrastructure Systems, 25 (3), 1–8. https:.doi.org/10.1061/(ASCE)IS.1943-555X.0000501

Amato, M., Basso, B., Cellano, G., Bitella, G., Morelli, G., Rossi, R. (2008). In situ detection of tree root distribution and biomass by multielectrode resistivity imaging. Tree Physiology, 28, 1441–1448. https:.doi.org/10.1093/treephys/28.10.1441

Atkinson, J. A., Pound, M. P., Bennett, M. J., Wells, D. M. (2019). Uncovering the hidden half of plants using new advances in root phenotyping. Current Opinion in Biotechnology, 55, 1–8. https:.doi.org/10.1016/j.copbio.2018.06.002

Bain, J. C., Day, F. P., Butnor, J. R. (2017). Experimental Evaluation of Several Key Factors Affecting Root Biomass Estimation by 1500 MHz Ground-Penetrating Radar. Remote Sensing, 9, 1337. https:.doi.org/10.3390/rs9121337

Barton, C. V. M. and Montagu, K. D. (2004). Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiology, 24 (12), 1323–1331. https:.doi.org/10.1093/treephys/24.12.1323

Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M., Thomas, S. C. (2014). Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforest System, 88, 657–669. https:.doi.org/10.1007/s10457-014-9722-5

Borden, K. A., Thomas, S. C., Isaac, M. E. (2017). Interspecific variation of tree root architecture in a temperate agroforestry system characterized using ground-penetrating radar. Plant and Soil, 410, 323–334. https:.doi.org/10.1007/s11104-016-3015-x

Butnor, J. R., Doolittle, J. A., Kress, L., Cohen, S., Johnsen, K. H. (2001). Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiology, 21 (17), 1269–1278. https:.doi.org/10.1093/treephys/21.17.1269

Butnor, J. R., Samuelson, L. J., Stokes, T. A., Johnsen, K. H., Anderson, P. H., González-Benecke, C. A. (2016). Surface-based GPR underestimates below-stump root biomass. Plant and Soil, 402, 47–62. https:.doi.org/10.1007/s11104-015-2768-y

Cui, X., Chen, J., Shen, J.S., Cao, X., Chen, X. H., Zhu, X. L. (2011). Modeling tree root diameter and biomass by ground penetrating radar. Science China Earth Sciences, 54, 711–719. https:.doi.org/10.1007/s11430-010-4103-z

Danjon, F., Caplan, J. S., Fortin, M., Meredieu, C. (2013). Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster. Frontiers in Plant Science, 4, 402. https:.doi.org/10.3389/fpls.2013.00402

Delgado, A., Novo, A., Hays, D. B. (2019). Data Acquisition Methodologies Utilizing Ground Penetrating Radar for Cassava (Manihot esculenta Crantz) Root Architecture. Geosciences, 9 (4), 171. https:.doi.org/10.3390/geosciences9040171

Ehosioke, S., Nguyen, F., Rao, S., Kremer, T., Placencia-Gomez, E., Huisman, J.A., Kemna, A., Javaux, M., Garré, S. (2020). Sensing the electrical properties of roots: A review. Vadose Zone Journal, 19, e20082. https:.doi.org/10.1002/vzj2.20082

Eshel, A. and Beeckman, T., eds (2013). Plant roots: the hidden half. Boca Raton: CRC Press.

Fourcaud, T., Ji, J., Zhang, Z., Stokes, A. (2008). Understanding the impact of root morphology on uprooting mechanisms: a modelling approach. Annals of Botany, 101, 1267–1280. https:.doi.org/10.1093/aob/mcm245

Ghani, M. A., Stokes, A., Fourcaud, T. (2009). The effect of root architecture and root loss through trenching on the anchorage of tropical urban trees (Eugenia grandis Wight). Trees, 23, 197–209. https:.doi.org/10.1007/s00468-008-0269-9

Gregory, P. J. (2006). Plant roots; growth, activity and interaction with soils. Oxford: Blackwell. https:.doi.org/10.1002/9780470995563

Guo, L., Chen, J., Cui, X. H., Fan, B. H., Lin, H. (2013). Application of ground penetrating radar for coarse root detection and quantification: A review. Plant and Soil, 362, 1–23. https:.doi.org/10.1007/s11104-012-1455-5

Guo, L., Mount, G. J., Hudson, S., Lin, H., Levi, D. (2020). Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stem flow along coarse roots. Geoderma, 357, 113953. https:.doi.org/10.1016/j.geoderma.2019.113953

Guo, L., Wu, Y., Chen, J., Hirano, Y., Tanikawa, T., Li, W., Cui, X. (2015). Calibrating the impact of root orientation on root quantification using ground-penetrating radar. Plant and Soil, 395, 289–305. https:.doi.org/10.1007/s11104-015-2563-9

Hirano, Y., Dannoura, M., Aono, K., Igarashi, T., Ishii, M., Yamase, K., Makita, N., Kanazawa, Y. (2009). Limiting factors in the detection of tree roots using ground-penetrating radar. Plant and Soil, 319, 15–24. https:.doi.org/10.1007/s11104-008-9845-4

Hirano, Y., Yamamoto, R., Dannoura, M., Aono, K., Igarashi, T., Ishii, M., Yamase, K., Makita, N., Kanazawa, Y. (2012). Detection frequency of Pinus thunbergii roots by ground-penetrating radar is related to root biomass. Plant and Soil, 360, 363–373. https:.doi.org/10.1007/s11104-012-1252-1

Hruška, J., Čermák, J., Sustek, S. (1999). Mapping tree root systems with ground-penetrating radar. Tree Physiology, 19 (2), 125–130. https:.doi.org/10.1093/treephys/19.2.125

Köstler, J. N., Bruckner, E., Bibelriether, H. (1968). The root systems of forest trees. Hamburg: Paul Parey.

Liu, X., Cui, X., Guo, L., Chen, J., Li, W., Yang, D., Cao, X., Chen, X., Liu, Q., Lin, H. (2019). Non-invasive estimation of root zone soil moisture from coarse root reflections in ground-penetrating radar images. Plant and Soil, 436, 623–639. https:.doi.org/10.1007/s11104-018-03919-5

Liu, X., Dong, X., Xue, Q., Leskovar, D. I., Jifon, J., Butnor, J. R., Marek, T. (2018). Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field. Plant and Soil, 423, 517–531. https:.doi.org/10.1007/s11104-017-3531-3

Lundström, T., Jonas, T., Stöckli, V., Ammann, W. (2007). Anchorage of mature conifers: resistive turning moment, root–soil plate geometry and root growth orientation. Tree Physiology, 27 (9), 1217–1227. https:.doi.org/10.1093/treephys/27.9.1217

Mancuso, S., ed. (2012). Measuring Roots. An Updated Approach. Berlin: Springer-Verlag. https:.doi.org/10.1007/978-3-642-22067-8

Martin, T. (2012). Complex resistivity measurements on oak. European Journal of Wood and Wood Products, 70, 45–53. https:.doi.org/10.1007/s00107-010-0493-z

Martínez-Sala, R., Rodríguez-Abad, I., Barra, R. D., Capuz-Lladró, R. (2013). Assessment of the dielectric anisotropy in timber using the nondestructive GPR technique. Construction and Building Materials, 38, 903–911. http:.dx.doi.org/10.1016/j.conbuildmat.2012.09.052

Mary, B., Saracco, G., Peyras, L., Vennetier, M., Mériaux, P., Camerlynck, C. (2016). Mapping tree root system in dikes using induced polarization: Focus on the influence of soil water content. Journal of Applied Geophysics, 135, 387–396. https:.doi.org/10.1016/j.jappgeo.2016.05.005

Mickovski, S. and Ennos, A. (2003). Model and whole-plant studies on the anchorage capabilities of bulbs. Plant and Soil, 255, 641–652. https:.doi.org/10.1023/A:1026007229517

Montagnoli, A., Lasserre, B., Sferra, G., Chiatante, D., Scippa, G.S., Terzaghi, M., Dumroese, R. K. (2020). Formation of annual ring eccentricity in coarse roots within the root cage of Pinus ponderosa growing on slopes. Plants, 9, 181. https:.doi.org/10.3390/plants9020181

Postic, F., Doussan, C. (2016). Benchmarking electrical methods for rapid estimation of root biomass. Plant Methods, 12 (1). 33. https:.doi.org/10.1186/s13007-016-0133-7

Puhe, J. (2003). Growth and development of the root system of Norway spruce (Picea abies) in forest stands – a review. Forest Ecology and Management, 175 (1–3), 253–273. https:.doi.org/10.1016/S0378-1127(02)00134-2

Repo, T., Korhonen, A., Laukkanen, M., Lehto, T., Silvennoinen, R. (2014). Detecting mycorrhizal colonisation in Scots pine roots using electrical impedance spectra. Biosystems Engineering, 121, 139–149. https:.doi.org/10.1016/j.biosystemseng.2014.02.014

Rodríguez-Robles, U., Arredondo, T., Huber-Sannwald, E., Ramos-Leal, J. A., Yepez, E. A. (2017). Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences, 14 (23), 5343–5357. https:.doi.org/10.5194/bg-14-5343-2017

Sani, L., Lisci, R., Moschi, M., Sarri, D., Rimediotti, M., Vieri, M., Tofanelli, S. (2012). Preliminary experiments and verification of controlled pulling tests for tree stability assessments in Mediterranean urban areas. Biosystems Engineering, 112 (3), 218–226. https:.doi.org/10.1016/j.biosystemseng.2012.04.004

Shanahan, P. W., Binley, A., Whalley, W. R., Watts, C. R. (2015). The use of electromagnetic induction to monitor changes in soil moisture profiles beneath different wheat genotypes. Soil Science Society of America Journal, 79 (2), 459–466. https:.doi.org/10.2136/sssaj2014.09.0360

Stover, D. B., Day, F. P., Butnor, J. R., Drake, B. G. (2007). Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar. Ecology, 88 (5), 1328–1334. https:.doi.org/10.1890/06-0989

Tanikawa, T., Hirano, Y., Dannoura, M., Yamase, K., Aono, K., Ishii, M., Igarashi, T., Ikeno, H., Kanazawa, Y. (2013). Root orientation can affect detection accuracy of ground-penetrating radar. Plant and Soil, 373, 317–327. https:.doi.org/10.1007/s11104-013-1798-6

Torgovnikov, G. I. (1993). Dielectric properties of wood and wood-based materials. Berlin: Springer.

Vennetier, M., Zanetti, C., Meriaux, P., Mary, B. (2015). Tree root architecture: new insights from a comprehensive study on dikes. Plant and Soil, 387, 81–101. https:.doi.org/10.1007/s11104-014-2272-9

Whalley, W., Binley, A., Watts, C., Shanahan, P., Dodd, I. C., Ober, E. S., Ashton, R. W., Webster, C. P., White, R. P., Hawkesford, M. J. (2017). Methods to estimate changes in soil water for phenotyping root activity in the field. Plant and Soil, 415, 407–422. https:.doi.org/10.1007/s11104-016-3161-1

Yamase, K., Tanikawa, T., Dannoura, M., Ohashi, M., Todo, C., Ikeno, H., Aono, K., Hirano, Y. (2018). Ground-penetrating radar estimates of tree root diameter and distribution under field conditions. Trees, 32, 1657–1668. https:.doi.org/10.1007/s00468-018-1741-9

Yeung, S. W., Yan, W. M., Hau, C. H. B. (2016). Performance of ground penetrating radar in root detection and its application in root diameter estimation under controlled conditions. Science China Earth Sciences, 59, 145–155. https:.doi.org/10.1007/s11430-015-5156-9

Zanetti, C., Vennetier, M., Mériaux, P., Royet, P., Provansal, M. (2011a). Managing woody vegetation on earth dikes: Risks assessment and maintenance solutions. Procedia Environmental Sciences, 9, 196–200. https:.doi.org/10.1016/j.proenv.2011.11.030

Zanetti, C., Weller, A., Vennetier, M., Meriaux, P. (2011b). Detection of buried tree root samples by using geoelectrical measurements: A laboratory experiment. Plant and Soil, 339, 273–283. https:.doi.org/10.1007/s11104-010-0574-0

Zanetti, C., Vennetier, M., Mériaux, P., Provensal, M. (2015). Plasticity of tree root system structure in contrasting soil materials and environmental conditions. Plant and Soil, 387 (1–2), 21–35. https:.doi.org/10.1007/s11104-014-2253-z

Published

2024-07-08

How to Cite

Ryazantsev P. А. and Kabonen, A. V. (2024) “Criteria for mapping and estimation root systems using ground penetrating radar by the example of the European spruce”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.203.

Issue

Section

Articles