Analysis of the capabilities of marine electrical exploration technologies in solving problems of prospecting and monitoring oil and gas fields using 3D modeling and geometric 3D inversion
DOI:
https://doi.org/10.21638/spbu07.2024.204Abstract
The possibilities and comparative analysis of marine electrical exploration technologies for solving problems of hydrocarbon search and monitoring of oil-water contact are presented. The studies were carried out using a 3D modeling and geometric 3D inversion. The 3D modeling method is based on a special mathematical formulation with two-stage primary-secondary field approach and finite element approximation using vector basis functions. The 3D geometric inversion method is aimed at maximizing the accuracy of determining the boundaries of target objects. We consider a new technology for electrical prospecting, which is implemented in start-stop mode and make measurements in the time domain. This technology includes an eight-arm receiver located on the seabed and two sources in the form of horizontal electric dipoles, which can be located either on the seabed or at the surface of the water. It is shown that this technology makes it possible to obtain a significantly larger absolute and relative signal from a deep-lying object of increased resistivity compared to technologies in which the field is excited and received either by horizontal or vertical lines. For technology with an eight-arm receiver, we analyze the error in determining the oil-water contact and equivalence. It is shown that in the case of sufficient sensitivity of signals to the presence of a deep target object, the position of its boundaries can be determined with an accuracy of no worse than 200 m for a target depth of 2.5 km if the contrast in the resistivity of the object to the background medium is sufficient. It is also shown that the position of the oil-saturated zone boundary is determined by the change of sign between negative and positive extrema in the deviations of signals obtained when this boundary is displaced during oil production, and the resistivity of the area remaining after the displacement of the main volume of oil is determined by the level of these extrema. This, in turn, opens up prospects for using this technology in solving problems of monitoring the boundary of the oil-saturated zone during the development of offshore oil fields.
Keywords:
marine electrical exploration, hydrocarbon prospecting, monitoring, 3D modeling, 3D inversion
Downloads
References
Abubakar, A., Habashy, T. M., Li, M., Liu, J. (2009). Inversion algorithms for large-scale geophysical electromagnetic measurements. Inverse Problems, 25, 123012. https://doi.org/10.1088/0266-5611/25/12/123012
Brown, V., Hoversten, M., Key, K., Chen, J. (2012). Resolution of reservoir scale electrical anisotropy from marine CSEM data. Geophysics, 77, E147–E158. https://doi.org/10.1190/geo2011-0159.1
Cai, H., Hu, X., Li, J., Endo, M., Xiong, B. (2017). Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh. Computers Geosciences, 99, 125–134. https://doi.org/10.1016/j.cageo.2016.11.009
Constable, S. (2013). Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophys. Prospect, 61, 505–532. https://doi.org/10.1111/j.1365-2478.2012.01117.x
Da Piedade, A. A., Régis, C., Nunes, C. M. B., da Silva, H. F. (2021). Computational cost comparison between nodal and vector finite elements in the modeling of controlled source electromagnetic data using a direct solver. Computers Geosciences, 156, 104901. https://doi.org/10.1016/j.cageo.2021.104901
Da Silva, N. V., Morgan, J. V., MacGregor, L., Warner, M. (2012). A finite element multifrontal method for 3D CSEM modeling in the frequency domain. Geophysics, 77, E101–E115. https://doi.org/10.1190/geo2010-0398.1
Du, Z., Namo, G., May, J., Reiser, C., Midgley, J. (2017). Total hydrocarbon volume in place: improved reservoir characterization from integration of towed-streamer EM and dual-sensor broadband seismic data. First Break, 35. https://doi.org/10.3997/1365-2397.35.9.90115
edgerov.com.au (2024). Edgerov — Autonomous Technology. [online] Available at: https://edgerov.com.au/wp-content/uploads/2022/09/EROV-Seasam-Catalog-Q3.2022-Sept-2022.pdf. [Accessed 29.01.2024].
Girard, J.-F., Coppo, N., Rohmer, J., Bourgeois, B., Naudet, V., Schmidt-Hattenberger, C. (2011). Time-lapse CSEM monitoring of the Ketzin (Germany) CO2 injection using 2×MAM configuration. Energy Procedia, 4, 3322–3329. https://doi.org/10.1016/j.egypro.2011.02.253
Haroon, A., Hölz, S., Gehrmann, R. A. S., Attias, E., Jegen, M., Minshull, T. A., Murton, B. J. (2018). Marine dipole–dipole controlled source electromagnetic and coincident-loop transient electromagnetic experiments to detect seafloor massive sulphides: effects of three-dimensional bathymetry. Geophysical Journal International, 215, 2156–2171. https://doi.org/10.1093/gji/ggy398
Helwig, S. L., Wood, W., Frafjord, Ø. (2017). First CSEM Surveys with a Newly Designed Receiver. In: 79th EAGE Conference and Exhibition 2017. https://doi.org/10.3997/2214-4609.201700566
Helwig, S. L., El Kaffas, A. W., Holten, T., Frafjord, O., Eide, K. (2013). Vertical dipole CSEM: technology advances and results from Snohvit field. First Break, 31 (4), 63–68.
Holten, T., Flekkøy, E. G., Singer, B., Blixt, E. M., Hanssen, A., Måløy, K. J. (2009). Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First Break, 27. https://doi.org/10.3997/1365-2397.27.1299.28934
Johansen, S. E., Panzner, M., Mittet, R., Amundsen, H. E. F., Lim, A., Vik, E., Landrø, M., Arntsen, B. (2019). Deep electrical imaging of the ultraslow-spreading Mohns Ridge. Nature, 567, 379–383. https://doi.org/10.1038/s41586-019-1010-0
Karoth, P. (2023). Minimizing positional errors during ROV visual inspection. A guide for underwater video survey professionals | Hydro International. [online] Available at: https://www.hydro-international.com/content/article/minimizing-positional-errors-during-rov-visual-inspection. [Accessed 29.01.2024].
Key, K. (2009). 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74, F9–F20. https://doi.org/10.1190/1.3058434
King, R. B., Constable, S., Maloney, J. M. (2022). A case study in controlled source electromagnetism: Near seabed hydrocarbon seep systems of Coal Oil Point, California, USA. Mar. Petroleum geology, 139, 105636. https://doi.org/10.1016/j.marpetgeo.2022.105636
Knai, T. A. and Knipe, R. J. (1998). The impact of faults on fluid flow in the Heidrun Field. Geological Society, London, Special Publ. 147, 269–282. https://doi.org/10.1144/GSL.SP.1998.147.01.18
Legeydo, P. Y. and Ageenkov, E. V. (2011). Differentially-normalized Method of Electroinvestigation (DNME) — An Efficient Instrument for HC Exploration Off- and Onshore. In: SPE Arctic and Extreme Environments Conference and Exhibition. SPE. https://doi.org/10.2118/149910-MS
Li, G., Zhang, L., Goswami, B. K. (2022). Complex Frequency-Shifted Perfectly Matched Layers for 2.5D Frequency-Domain Marine Controlled-Source EM Field Simulations. Surveys in Geophysics, 43, 1055–1084. https://doi.org/10.1007/s10712-022-09699-z
Liu, Z., Ren, Z., Yao, H., Tang, J., Lu, X., Farquharson, C. (2023). A parallel adaptive finite-element approach for 3-D realistic controlled-source electromagnetic problems using hierarchical tetrahedral grids. Geophysical Journal International, 232, 1866–1885. https://doi.org/10.1093/gji/ggac419
Mogilatov, V. and Goldman, M. (2020). Generalized Tikhonov’s algorithm for accurate calculation of one-dimensional transient responses directly in time domain. Geophysical Prospecting, 68, 690–708. https://doi.org/10.1111/1365-2478.12843
Mogilatov, V., Goldman, M., Persova, M., Soloveichik, Y., Koshkina, Y., Trubacheva, O., Zlobinskiy, A. (2016). Application of the marine circular electric dipole method in high latitude Arctic regions using drifting ice floes. Journal of Applied Geophysics, 135, 17–31. https://doi.org/10.1016/j.jappgeo.2016.08.007
Nunes, C. M. B. and Régis, C. (2020). GEMM3D: An Edge Finite Element program for 3D modeling of electromagnetic fields and sensitivities for geophysical applications. Computers Geosciences, 139, 104477. https://doi.org/10.1016/j.cageo.2020.104477
Park, J., Fawad, M., Viken, I., Aker, E., Bjørnarå, T. I. (2013). CSEM Sensitivity Study for Sleipner CO2-injection Monitoring. Energy Procedia, 37, 4199–4206. https://doi.org/10.1016/j.egypro.2013.06.322
Persova, M. G., Soloveichik, Y. G., Domnikov, P. A., Vagin, D. V., Koshkina, Y. I. (2015). Electromagnetic field analysis in the marine CSEM detection of homogeneous and inhomogeneous hydrocarbon 3D reservoirs. Journal of Applied Geophysics, 119, 147–155. https://doi.org/10.1016/j.jappgeo.2015.05.019
Persova, M. G., Soloveichik, Y. G., Kjerstad, J. K. (2022). Method and apparatus for performing a CSEM survey. Patent no. WO2022186701A1 2022-09-09, Priorities: NO20210285A 2021-03-03.
Persova, M. G., Soloveichik, Y. G., Kjerstad, J. K., Sivenkova, A. P., Kiseleva, A. S., Kiselev, D. S. (2023). Geometric 2.5D inversion of marine time domain electromagnetic data with application to hydrocarbon deposits prospecting. Journal of Applied Geophysics, 212, 104996. https://doi.org/10.1016/j.jappgeo.2023.104996
Persova, M. G., Soloveichik, Y. G., Trigubovigh, G. M. (2011). Computer modeling of geoelectromagnetic fields in three-dimensional media by the finite element method. Izvestiya, Physics of the Solid Earth, 47, 79–89. https://doi.org/10.1134/S1069351311010095
Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Grif, A. M., Kiselev, D. S., Patrushev, I. I., Nasybullin, A. V., Ganiev, B. G. (2021a). The design of high-viscosity oil reservoir model based on the inverse problem solution. Journal of Petroleum Science and Engineering, 199, 108245. https://doi.org/10.1016/j.petrol.2020.108245
Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Kiselev, D. S., Grif, A. M., Koshkina, Y. I., Sivenkova, A. P. (2020a). Three-dimensional inversion of airborne data with applications for detecting elongated subvertical bodies overlapped by an inhomogeneous conductive layer with topography. Geophysical Prospecting, 68, 2217–2253. https://doi.org/10.1111/1365-2478.12979
Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Kiselev, D. S., Koshkina, Y. I. (2020b). Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes. Journal of Applied Geophysics, 172, 103911. https://doi.org/10.1016/j.jappgeo.2019.103911
Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Kiselev, D. S., Sivenkova, A. P., Grif, A. M. (2021b). Improving the computational efficiency of solving multisource 3-D airborne electromagnetic problems in complex geological media. Computers Geosciences, 25, 1957–1981. https://doi.org/10.1007/s10596-021-10095-6
Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Sivenkova, A. P., Kiseleva, A. S., Tokareva, M. G. (2021c). Improving the Accuracy of 3-D Modeling Electromagnetic Fields in Marine Electrical Prospecting Problems, in: 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). IEEE, 583–586. https://doi.org/10.1109/APEIE52976.2021.9647511
PL887 Status Report at Licence Lapse (2020). [report] PGNiG Upstream Norway, Skagen 44, Concedo, Petrolia NOCO.
Schwalenberg, K., Gehrmann, R. A. S., Bialas, J., Rippe, D. (2020). Analysis of marine controlled source electromagnetic data for the assessment of gas hydrates in the Danube deep-sea fan, Black Sea. Marine and Petroleum Geology, 122, 104650. https://doi.org/10.1016/j.marpetgeo.2020.104650
Schwalenberg, K., Rippe, D., Koch, S., Scholl, C. (2017). Marine‐controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. Journal of Geophysical Research: Solid Earth, 122, 3334–3350. https://doi.org/10.1002/2016JB013702
Schwarzbach, C., Börner, R.-U., Spitzer, K. (2011). Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics-a marine CSEM example. Geophysical Journal International, 187, 63–74. https://doi.org/10.1111/j.1365-246X.2011.05127.x
Senger, K., Birchall, T., Betlem, P., Ogata, K., Ohm, S., Olaussen, S., Paulsen, R. S. (2021). Resistivity of reservoir sandstones and organic rich shales on the Barents Shelf: Implications for interpreting CSEM data. Geoscience Frontiers, 12, 101063. https://doi.org/10.1016/j.gsf.2020.08.007
Soloveichik, Yu.G., Persova, M.G., Vagin, D.V., Sivenkova, A.P., Kiselev, D.S., Koshkina, Yu.I. (2024). Comparative analysis of computational schemes for FEM modeling of 3D time-domain geoelectromagnetic fields excited by a horizontal grounded-wire source. Computers and Geosciences 183, 105514. https://doi.org/10.1016/j.cageo.2023.105514
Soloveichik, Yu.G., Royak, M.E., Persova, M.G. (2007). Finite element method for solving scalar and vector problems. Novosibirsk: NSTU Publ. (In Russian)
Theuerkorn, K. (2012). Reservoir characterisation using macromolecular petroleum compounds including asphaltenes: A case study of the Heidrun oil field in the Norwegian North Sea. [thesis] Berlin.
Thrana, C., Næss, A., Leary, S., Gowland, S., Brekken, M., Taylor, A. (2014). Updated depositional and stratigraphic model of the Lower Jurassic Åre Formation, Heidrun Field, Norway. In: From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin. 253–289. https://doi.org/10.1002/9781118920435.ch11
Um, E. S., Harris, J. M., Alumbaugh, D. L. (2010). 3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach. Geophysics 75, F115–F126. https://doi.org/10.1190/1.3473694
Zhang, M., Farquharson, C. G., Lin, T. (2022). Comparison of nodal and edge basis functions for the forward modelling of three-dimensional frequency-domain wire source electromagnetic data using a potentials formulation. Geophysical Prospecting, 70, 828–843. https://doi.org/10.1111/1365-2478.13187
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.