Features of the vortex structures in the fields of Eulerian and Lagrangian hydrological characteristics for the Northwest Pacific
DOI:
https://doi.org/10.21638/spbu07.2024.209Abstract
This work presents a combined analysis of the spatial distributions of oceanographic fields based on Eulerian and Lagrangian approaches. In the Eulerian approach, the fluid motion is considered as a function of coordinates and time, and the equations of motion are formulated for specific points in space. In contrast, the Lagrangian approach focuses on tracking individual particles in the ocean, representing water masses or other materials, as separate objects moving according to the equations of motion. The variability of oceanographic characteristics in the Northwest Pacific region is examined, specifically analyzing the spatial distributions of oceanographic fields on October 24, 2010. The AMEDA algorithm is used to identify mesoscale eddies. Within the Eulerian approach, it is shown that regions prohibiting the stretching of mesoscale eddies only partially correspond to areas where large-scale eddies are located. Vortical structures and elements of large-scale circulation are well manifested in the distributions of the Lyapunov exponent (Λ-maps) and maps characterizing the trajectories of advected particles (S-maps). Enhanced values of kinetic and available potential energy correspond to the main circulation structures in the region. However, for analyzing the evolution of circulation structures, they are less informative compared to Λ-maps and S-maps, which accumulate information from the previous period. Spatial distributions of relative and potential vorticity are constructed. Positive values of relative vorticity outline the Kuroshio current from the north, while negative values outline it from the south, which is typical of jet currents with a pronounced zonal component. Mesoscale eddies exhibit elevated values of vorticity and a shielding effect (shielded vortices). In the Lagrangian experiment with passive tracer patches, it is demonstrated that the most deformation-resistant patch spent most of the analyzed time interval in a domain where the stretching of eddies is prohibited.
Keywords:
Eulerian approach, Lagrangian approach, Northwest Pacific, GLORYS12V, mesoscale vortices, Kuroshio Current, Oyashio current, passive tracers
Downloads
References
Белоненко, Т. В., Колдунов, В. В., Старицын, Д. К., Фукс, В. Р., Шилов, И. О. (2009). Изменчивость уровня Северо-западной части Тихого океана. СПб.: Изд-во СМИО-ПРЕСС.
Вулис, И. Л. и Монин, А. С. (1975). О доступной потенциальной энергии океана. Доклады АН СССР, 221 (3), 597–600.
Жмур, В. В. (2011). Мезомасштабные вихри океана. М.: ГЕОС.
Жмур, В. В., Белоненко Т. В., Новоселова Е. В., Суетин Б. П. (2023а). Прямой и обратный каскад энергии при вытягивании вихрей в океане. Доклады Российской академии наук. Науки о Земле, 508 (2), 270–274. https://doi.org/10.1134/S1028334X22601675.
Жмур, В. В., Белоненко, Т. В., Новоселова, Е. В., Суетин, Б. П. (2023б). Условия трансформации мезомасштабного вихря в субмезомасштабную вихревую нить при вытягивании его неоднородным баротропным течением. Океанология, 63 (2), 200–210. https://doi.org/10.31857/S0030157423020144.
Жмур, В. В., Белоненко, Т. В., Новоселова, Е. В., Суетин, Б. П. (2023в). Приложение к реальному океану теории трансформации мезомасштабного вихря в субмезомасштабную вихревую нить при вытягивании его неоднородным баротропным течением. Океанология, 63 (2), 211–223. https://doi.org/10.31857/S0030157423020156.
Жмур, В. В., Новоселова, Е. В., Белоненко, Т. В. (2022). Особенности формирования поля плотности в мезомасштабных вихрях Лофотенской котловины. Часть 2. Океанология, 62 (3), 341–356. https://doi.org/10.31857/S0030157422030170.
Пранц, С. В. (2021). Вихри глубоководных желобов северо-западной части Тихого океана: обзор. Известия РАН. Физика атмосферы и океана, 57 (4), 387–400. https://doi.org/10.31857/S0002351521040106.
Травкин, В. С., Белоненко, Т. В., Кочнев, А. В. (2022). Топографические волны в Курильском районе. Современные проблемы дистанционного зондирования Земли из космоса, 19 (5), 222–234. https://doi.org/10.21046/2070-7401-2022-19-5-222-234.
Carton, X. (2001). Hydrodynamical modeling of oceanic vortices. Surveys in Geophysics, 22, 179–263. https://doi.org/10.1023/A:1013779219578.
Le Vu, B., Stegner, A., Arsouze, T. (2018). Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation. Journal of Atmospheric and Oceanic Technology, 35 (4), 739–762. https://doi.org/10.1175/JTECH-D-17-0010.1.
Lorenz, E. N. (1955). Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167. https://doi.org/10.3402/tellusa.v7i2.8796.
Prants, S. V., Budyansky, M. V., Fayman, P. A., Uleysky, M. Yu., Didov, A. A. (2023). Lagrangian Oil Spill Simulation in Peter the Great Bay (Sea of Japan) with a High-Resolution ROMS Model. Pure and Applied Geophysics, 180, 551–568. https://doi.org/10.1007/s00024-022-03197-4.
Prants, S. V., Budyansky, M. V., Uleysky, M. Yu., Zhang, J. (2015). Hyperbolicity in the Ocean. Discontinuity, Nonlinearity, and Complexity, 12 (3), 257–270. https://doi.org/10.5890/DNC.2015.09.004.
Prants, S. V., Uleysky, M. Yu., Budyansky, M. V. (2017). Lagrangian Oceanography. Berlin, New York: Springer Cham. https://doi.org/10.1007/978-3-319-53022-2.
Zhmur, V. V., Novoselova, E. V., Belonenko, T. V. (2021). Peculiarities of Formation the of Density Field in Mesoscale Eddies of the Lofoten Basin: Part 1. Oceanology, 61 (6), 830–838. https://doi.org/10.1134/S0001437021060333.
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.