Long-term variability of surface manifestations of eddies in the Kara Sea

Authors

  • Aleksandr A. Konik P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36, Nakhimovsky pr., Moscow, 117997, Russian Federation https://orcid.org/0000-0002-2089-158X
  • Aleksey V. Zimin P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36, Nakhimovsky pr., Moscow, 117997, Russian Federation; St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-1662-6385

DOI:

https://doi.org/10.21638/spbu07.2024.208

Abstract

The paper provides a quantitative assessment of the long-term variability of small eddies structures in the Kara Sea based on the analysis of Sentinel-1A/B satellite radar images from August 2015 to 2021. To compare the variability of the characteristics in different years, data on wind speed, ice area, and mixed layer thickness were used. During the specified period, 6340 surface manifestations of vortices were identified, with an average diameter of 2.9 km, predominantly cyclonic in rotation. The lowest number of surface manifestations was recorded in 2016 — 468 eddies, while the highest was in 2021 — 1247 eddies. It was found that the main areas of occurrence of manifestations are located in the southwest and central parts of the Kara Sea above the depths west and northwest of the Yamal Peninsula, as well as in the regions of the frontal drainage zone and the surface freshwater layer near the mouths of the Ob and Yenisei rivers. A significant prevalence of cyclonic eddies over anticyclonic ones is observed throughout the years, with their mean diameter ranging from 2.3 km in 2017 to 3.7 km in 2021. The variability in the number of registered eddies is presumably related to the influence of the intensity of wind stress in the atmospheric boundary layer on the sea surface. A significant portion of small eddies is registered at wind speeds of 5 m/s in the developed mixed layer with a thickness of more than 10 meters. It is shown that the most likely cause of eddy generation is the interaction of tides with the topographic irregularities of the seabed and baroclinic instability observed in the River Plume frontal zone.

Keywords:

eddies, synthetic aperture radar, submesoscale, wind, tides, River Plume frontal zone, Kara Sea

Downloads

Download data is not yet available.
 

References

Артамонова, А. В., Козлов, И. Е., Осадчиев, А. А., Степанова, Н. Б. (2021). Вихри в Карском море на основе дистанционных и контактных измерений летом 2021 года. В: Материалы 19-й Международной конференции «Современные проблемы дистанционного зондирования Земли из космоса». М.: ИКИ РАН. https://doi.org/10.21046/19DZZconf-2021a

Атаджанова, О. А., Зимин, А. В., Круглова, К. А. (2022). Особенности поверхностных проявлений малых вихрей в Беринговом море в летний сезон по данным спутниковых радиолокационных изображений. Современные проблемы дистанционного зондирования Земли из космоса, 19 (3), 270–278. https://doi.org/10.21046/2070-7401-2022-19-3-270-278

Атаджанова, О. А., Зимин, А. В., Романенков, Д. А., Козлов, И. Е. (2017). Наблюдение малых вихрей в Белом, Баренцевом и Карском морях по данным спутниковых радиолокационных измерений. Морской гидрофизический журнал, 2 (194), 80–90. https://doi.org/10.22449/0233-7584-2017-2-80-90.

Журбас, В. М., Кузьмина, Н. П., Лыжков, Д. А. (2017). Вихреобразование за мысом при генерации течения кратковременным воздействием вдольберегового ветра (численные эксперименты). Океанология, 57 (3), 389–399. https://doi.org/10.7868/S0030157417020228

Зимин, А. В. (2018). Субприливные процессы и явления в Белом море. М.: ГЕОС.

Зубкова, Е. В. и Козлов, И. Е. (2020). Характеристики поля короткопериодных внутренних волн в Чукотском море по данным спутниковых РСА-наблюдений. Современные проблемы дистанционного зондирования Земли из космоса, 17 (4), 221–230. https://doi.org/10.21046/2070-7401-2020-17-4-221-230

Коник, А. А., Зимин, А. В., Атаджанова, О. А. (2022). Пространственно-временная изменчивость характеристик стоковой фронтальной зоны в Карском море в первые два десятилетия XXI века. Фундаментальная и прикладная гидрофизика, 15 (4), 23–41. https://doi.org/10.48612/fpg/38mu-zda7-dpep

Коник, А. А., Козлов, И. Е., Зимин, А. В., Атаджанова, О. А. (2020). Спутниковые наблюдения вихрей и фронтальных зон Баренцева моря в годы с различной ледовитостью. Современные проблемы дистанционного зондирования Земли из космоса, 17 (5), 191–201. https://doi.org/10.21046/2070-7401-2020-17-5-191-201

Лаврова, О. Ю., Митягина, М. И., Сабинин, К. Д., Серебряный, А. Н. (2015). Изучение гидродинамических процессов в шельфовой зоне на основе спутниковой информации и данных подспутниковых измерений. Современные проблемы дистанционного зондирования Земли из космоса, 12 (5), 98–129.

Прохорова, У. В. (2022). Оценка влияния метеорологических параметров на изменчивость площади и толщины морского льда в Карском море. Проблемы Арктики и Антарктики, 68 (1), 64–75. https://doi.org/10.30758/0555-2648-2022-68-1-64-75

Пузина, О. С., Кубряков, А. А., Мизюк, А. И. (2021). Сезонная и вертикальная изменчивость энергии течений в субмезомасштабном диапазоне на шельфе и в центральной части Черного моря. Морской гидрофизический журнал, 37 (1), 41–56. https://doi.org/10.22449/0233-7584-2021-1-41-56

Aleskerova, A., Kubryakov, A., Stanichny, S., Medvedeva, A., Plotnikov, E., Mizyuk, A., Verzhevskaia, L. (2021). Characteristics of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurements. Ocean Dynamics, 71, 655–677. https://doi.org/10.1007/s10236-021-01458-9

Alpers, W., Brandt, P., Lazar, A., Dagorne, D. Sow, B., Faye, S., Hansen, M., Rubino, A., Poulain, P-M., Brehmer, P. (2013). A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment, 129, 132–143. https://doi.org/10.1016/j.rse.2012.10.032

Bashmachnikov, I. L., Kozlov, I. E., Petrenko, L. A., Glok, N. I., Wekerle C. (2020). Eddies in the North Greenland Sea and Fram Strait from satellite altimetry, SAR and high‐resolution model data. Journal of Geophysical Research: Oceans, 125, e2019JC015832. https://doi.org/10.1029/2019JC015832

Cassianides, A., Lique, C., Korosov, A. (2021). Ocean eddy signature on SAR-derived sea ice drift and vorticity. Geophysical Research Letters, 48, e2020GL092066. https://doi.org/10.1029/2020GL092066

D'Hieres, G. C., Davies, P. A., Didelle, H. (1989). Laboratory studies of pseudo-periodic forcing due to vortex shedding from an isolated solid obstacle in a homogeneous rotating fluid. Elsevier Oceanography Series, 50, 639–653. https://doi.org/10.1016/S0422-9894(08)70212-5

Dong, D., Yang, X., Li, X., Li, Z. (2016). SAR Observation of Eddy-Induced Mode-2 Internal Solitary Waves in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11), 6674–6686. https://doi.org/10.1109/tgrs.2016.2587752

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, D., Thépaut J-N. (2020). The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049. https://doi.org/10.1002/qj.3803

Karimova, S. S., andGade, M. (2016). Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery. International Journal of Remote Sensing, 37 (10), 2394–2414. https://doi.org/10.1080/01431161.2016.1145367

Kozlov, I. E. and Atadzhanova, O. A. (2022). Eddies in the Marginal Ice Zone of Fram Strait and Svalbard from Spaceborne SAR Observations in Winter. Remote Sensing, 14 (134). https://doi.org/10.3390/rs14010134

Kumar, A., Yadav, J., Mohan, R. (2021). Spatio-temporal change and variability of Barents-Kara Sea ice, in the Arctic: Ocean and atmospheric implications. Science of The Total Environment, 753, 142046. https://doi.org/10.1016/j.scitotenv.2020.142046

Lee, J.-S. (1983). Digital image smoothing and the sigma filter, Computer Vision, Graphics, and Image Processing, 24 (2), 255–269. https://doi.org/10.1016/0734-189x(83)90047-6

McWilliams, J. C. (2016). Submesoscale currents in the ocean, Proceedings of the Royal Society A, 472(2189), 20160117. https://doi.org/10.1098/rspa.2016.0117

Mensa, J. A., Timmermans, M.-L., Kozlov, I. E., Williams, W. J., Özgökmen, T. (2018). Surface drifter observations from the Arctic Ocean's Beaufort Sea: Evidence for submesoscale dynamics. Journal of Geophysical Research: Oceans, 123, 2635–2645. https://doi.org/10.1002/2017JC013728

Munk, W., Armi, L., Fischer, K., Zachariasen, F. (2000). Spirals on the sea. Proceedings of the Royal Society of London A, 456, 1217–1280. http://doi.org/10.1098/rspa.2000.0560

Nurser, A. J. G. and Bacon, S. (2014). The Rossby radius in the Arctic Ocean. Ocean Science, 10, 967–975. https://doi.org/10.5194/os-10-967-2014

Osadchiev, A. A., Frey, D. I., Shchuka, S. A., Tilinina, N. D., Morozov, E. G., Zavialov, P. O. (2020). Structure of the freshened surface layer in the Kara Sea during ice‐free periods. Journal of Geophysical Research: Oceans, 126, e2020JC016486. https://doi.org/10.1029/2020jc016486

Osadchiev, A., Viting, K., Frey D., Demeshko, D., Dzhamalova, A., Nurlibaeva, A., Gordey, A., Krechik, V., Spivak, E., Semiletov., I., Stepanova, N. (2022). Structure and Circulation of Atlantic Water Masses in the St. Anna Trough in the Kara Sea. Frontiers in Marine Science, 9, 915674. https://doi.org/10.3389/fmars.2022.915674

Overland, J. E., Wang, M., Walsh, J. E., Stroeve, J. C. (2013). Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future, 2, 68–74. https://doi.org/10.1002/2013ef000162

Ruggieri, P., Kucharski, F., Buizza, R., Ambaum, M. H. P. (2017). The transient atmospheric response to a reduction of sea-ice cover in the Barents and Kara Seas. Quarterly Journal of the Royal Meteorological Society, 143 (704), 1632–1640. https://doi.org/10.1002/qj.3034

Spreen, G., Kaleschke, L., Heygster, G. (2008). Sea ice remote sensing using AMSR‐E 89 GHz channels. Journal of Geophysical Research, 113, C02S03. https://doi.org/10.1029/2005JC003384

Thomas, L. N., Tandon, А., Mahadevan, А. (2008). Submesoscale processes and dynamics, Ocean Modeling in an Eddying Regime. Geophysical Monograph Series, 177, 17–38. https://doi.org/10.1029/177GM04

Yamanouchi, T. and Takata, K. (2020). Rapid change of the Arctic Climate system and its global influences — Overview of GRENE Arctic Climate change research project (2011–2016). Polar Science, 25, 100548. https://doi.org/10.1016/j.polar.2020.100548

Published

2024-07-08

How to Cite

Konik, A. A. and Zimin, A. V. (2024) “Long-term variability of surface manifestations of eddies in the Kara Sea”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.208.

Issue

Section

Articles