Soil-geochemical assessment of salinization of the territory adjacent to the Kuchuk salt deposit (Altai Krai)

Authors

  • Yulia V. Simonova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Oksana R. Zhunusova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Marina V. Charykova Saint Petersburg State University, 7–9, Universitetskaya nab., Saint Petersburg, 199034, Russian Federation
  • Galina A. Kasatkina Dokuchaev Central Soil Science Museum, Branch of the Dokuchaev Soil Science Institute, 6, Birzhevoy proezd, Saint Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2024.110

Abstract

A soil geochemical analysis was conducted to assess the impact of the exploitation of the Lake Kuchuk salt deposit on the salinization of the soils in the adjacent areas. The specific characteristic of the soil forming in the Kulunda steppe is the wide distribution of salinization processes. Solonetzes soils are distributed in the impact zone of the deposit exploitation; therefore, as background soils, we considered also Solonetzes. Background soils are located at a considerable distance (2–10 km) from industrial facilities. The results of the chemical analysis of the soil-water extracts showed that the area of the most intense salinization is concentrated in the eastern and southeastern parts of the depression of the former lake. Nowadays, a salt evaporation pond and an open salt storage, which are the main industrial sources of sodium sulfate dust, occupy the bottom of the lake. The maximum salt content (over 1%) was found in these parts of the basin and is associated with the prevailing wind direction in the study area. With an increase in the hypsometric level of the surfaces and the distance from the open technological sources of dust, as well as on the opposite slope of the basin, there was a sharp (2–3 times) decrease in the salt content. The total salt content in the background soils ranged from 0.3 to 0.6%. The specificity of the chemistry of soil salinization in the impact zone was the dominance of sulfates and sodium in the composition of the soil-water extract, and thenardite, which is a dehydration product of mirabilite, in the composition of salt crust minerals and salt efflorescences. In the background Solonetzes, the participation of soda in the chemical composition became more noticeable, which is a natural halogen geochemical feature of the Kulunda steppe. In the surface salt crusts in the background areas, a greater variety of minerals were noted, among which there were typical minerals of the evaporite association (gypsum, halite, calcite, dolomite, mirabilite) and their rare species (konyaite, wedellit).

Keywords:

Kulunda steppe, mirabilite, Solonetzes, Western Siberia, salt-affected soils

Downloads

Download data is not yet available.
 

References

Базилевич, Н.И. (1965). Геохимия почв содового засоления. Москва: Наука.

Базилевич, Н.И., Панкова, Е.И. (1972). Опыт классификации почв по содержанию токсичных солей и ионов. Бюллетень Почвенного института им. В.В. Докучаева, 5, 36–40.

Булатов, В.И., Ротанова, И.Н., Черных, Д.В. (2005). Ландшафтно-экологический и картографический анализ озерно-бассейновых систем юга Западной Сибири (озера Чаны и Кулундинское). Сибирский экологический журнал, 2, 175–182.

Валяшко, М.Г. (1962). Геохимические закономерности формирования месторождений калийных солей. Москва: Изд-во Моск. ун-та.

Воробьева, Л. А. (1998). Химический анализ почв. Москва: Изд. Моск. Ун-та.

Герасимов, И.П., Иванова, Е.Н. (1934). Процессы континентального соленакопления в почвах, породах, подземных водах и озерах Кулундинской степи. Труды Почвенного института им. В.В. Докучаева, 9, 103–136.

Засоленные почвы России. (2006). Москва: ИКЦ «Академкнига».

Казанцев, В.А. (1998). Проблемы педогалогенеза: на примере Барабинской равнины. Новосибирск: Наука.

Классификация и диагностика почв России. (2004). Смоленск: Ойкумена.

Ковалев, Р.В., Панин, П.С., Панфилов, В.П., Селяков, С.Н. (1967). Почвы Кулундинской степи. Новосибирск: Наука.

Ковда, В.А. (1937). Солончаки и солонцы. Москва-Ленинград: АН СССР.

Ковда, В.А. (1946). Происхождение и режим засоленных почв. Т. 1. М.–Л.: Изд-во АН СССР.

Ковда, И.В., Хохлова, О.С. (2015). Карбонатный профиль почв. В: И.В., Иванов, В.Н., Кудеяров, под ред., Эволюция почв и почвенного покрова. Теория, разнообразие природной эволюции и антропогенных трансформаций почв. Москва: ГЕОС, 140–158.

Кучин, М.И. (1940). Генезис солей Кулундинской степи. В: Труды научной конференции по изучению и освоению производительных сил Сибири. Т. 2: Проблема: минерально-сырьевая база Сибири. Томск: Изд-во «Красное знамя», 516–525.

Леонова, Г.А., Богуш, А.А., Бобров, В.А., Бычинский, В.А., Трофимова, Л.Б., Маликов, Ю.И. (2007). Эколого-геохимическая оценка соляных озер Алтайского края. География и природные ресурсы, 1, 51–59.

Макарычев, С.В. (2019). Солонцы засушливой степи, их свойства и возможность мелиорации. Вестник Алтайского государственного аграрного университета, 5(175), 64–70.

Мартынов, В.А. (1957). Основные черты геоморфологии Кулундинской степи. Вестник Западно-Сибирского геологического управления, 1(1), 73–84.

Растворова, О.Г., Андреев, Д.П., Гагарина, Э.И., Касаткина, Г.А., Федорова, Н.Н. (1995). Химический анализ почв. Санкт-Петербург: Изд-во С.-Петербургского ун-та.

Ульященко, Ф.Н. (1935). Почвы Кулундинской степи (в связи с ее орошением). Труды Томского государственного университета им. В.В. Куйбышева, 88, 156–207.

Урусевская, И.С., Алябина, И.О., Шоба, С.А. (2020). Карта почвенно-экологического районирования Российской Федерации. Масштаб 1:8 000 000. Пояснительный текст и легенда к карте: Учебное пособие. Москва: МАКС Пресс.

Хитров, Н.Б., Воробьева, Л.А. (2013). Оценка засоленности почв. В: А.Л., Иванов, под ред., Научные основы предотвращения деградации почв (земель) сельскохозяйственных угодий России и формирования систем воспроизводства их плодородия в адаптивно-ландшафтном земледелии. Т. 1. Теоретические и методические основы предотвращения деградации почв (земель) сельскохозяйственных угодий. Москва: Почв. ин-т им. В.В. Докучаева, 426–441.

Шульгин, А.М. (1972). Климат почв и его регулирование, 2-е изд. Ленинград: Гидрометеоиздат.

Baddock, M.C., Bullard, J.E., Bryant, R.G. (2009). Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113 (7), 1511–1528.

Blanco, M.D.C., Stoops, G. (2007). Genesis of pedons with discontinuous argillic horizons in the Holocene loess mantle of the southern Pampean landscape, Argentina. Journal of South American Earth Sciences, 23(1), 30–45. https://doi.org/10.1016/j.jsames.2006.08.007

Buck, B.J., King, J., Etyemezian, V. (2011). Effects of salt mineralogy on dust emissions, Salton Sea, California. Soil Science Society of America Journal, 75(5), 1971–1985. https://doi.org/10.2136/sssaj2011.0049.

Chappell, A., Strong, C., McTainsh, G., Leys, J. (2007). Detecting induced in situ erodibility of a dust-producing playa in Australia using a bi-directional soil spectral reflectance model. Remote Sensing of Environment, 106(4), 508–524. https://doi.org/10.1016/j.rse.2006.09.009

Chizhikova, N.P., Khitrov, N.B. (2016). Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia. Eurasian Soil Science, 49, 1419–1431. https://doi.org/10.1134/S106422931612005X

Climate data (2022). Climate data for cities worldwide. [online]. Available at: https://en.climate-data.org/ [Accessed 01.10.2022].

Durand, N., Monger, H.C., Canti, M.G. (2010). Calcium carbonate features. In: G., Stoops, V., Marselino, F., Mees, ed., Interpretation of micromorphological features of soils and regoliths, 2nd ed. Amsterdam: Elsevier, 149–194.

Eugster, H.P., Hardie, L.A. (1978). Saline Lakes. In: A., Lerman, ed., Lakes. New York, NY: Springer.

Goldstein, H.L., Breit, G.N., Reynolds, R.L. (2017). Controls on the chemical composition of saline surface crusts and emitted dust from a wet playa in the Mojave Desert (USA). Journal of Arid Environments, 140, 50–66. https://doi.org/10.1016/j.jaridenv.2017.01.010

IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.

Khitrov, N.B. (2004). The choice of diagnostic criteria to judge the development of the solonetzic process in soils. Eurasian Soil Science, 37(1), 12–23.

Lebedeva, M.P., Lopukhina, O.V., Kalinina, N.V. (2008). Specificity of the chemical and mineralogical composition of salts in solonchak playas and lakes of the Kulunda steppe. Eurasian Soil Science, 41, 416–428. https://doi.org/10.1134/S106422930804008X

Leduc, E.M.S., Peterson, R.C., Wang, R. (2009). The crystal structure and hydrogen bonding of synthetic konyaite, Na2Mg(SO4)2·5H2O. American Mineralogist, 94(7), 1005–1011. https://doi.org/10.2138/am.2009.3132

Manning, D.A.C. (2000). Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems. Journal of the Geological Society, 157(1), 229–238. https://doi.org/10.1144/jgs.157.1.229

Mees, F., Singer, A. (2006). Surface crusts on soils/sediments of the southern Aral Sea basin, Uzbekistan. Geoderma, 136, 152–159. https://doi.org/10.1016/j.geoderma.2006.03.019

Meyer, B.C., Schreiner, V., Smolentseva, E.N., Smolentsev, B.A. (2008). Indicators of desertification in the Kulunda Steppe in the south of Western Siberia. Archives of Agronomy and Soil Science, 54(6), 585–603.

Novoselov, A., Konstantinov, A., Konstantinova, E., Barbashev, A., Dudnikova, T., Lobzenko, I. (2022). Micromorphological and mineralogical features of saline playa surface sediments from two large Trans-Uralian lakes. Eurasian Journal of Soil Science, 11(2), 93–101.

Richards, L. (1954). Diagnosis and improvement of saline and alkali soils. Agricultural handbook, No. 60. Washington, DC, USA: US Department of Agriculture.

Shainberg, I., Letey, J. (1984). Response of soils to sodic and saline conditions. Hilgardia, 52(2), 1–57.

Szabolcs, I. (1989). Salt affected soils. Florida: CRC Press Inc.

Timpson, M.E., Richardson, J.L., Keller, L.P., McCarthy, G.J. (1986). Evaporite mineralogy associated with saline seeps in southwestern North Dakota. Soil Science Society of America Journal, 50(2), 490–493. https://doi.org/10.2136/sssaj1986.03615995005000020048x

Van Doesburg, J.D., Vergouwen, L., Van der Plas, L. (1982). Konyaite, Na2Mg(SO4)2·5H2O, a new mineral from the great Konya Basin, Turkey. American Mineralogist, 67(9–10), 1035–1038.

Verrecchia, E.P., Braissant, O., Cailleau, G. (2006). The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: G.M., Gadd, ed., Fungi in biogeochemical cycles. New York: Cambridge University Press, 289–310.

Wiggs, G.F.S., O’hara, S.L., Wegerdt, J., Meer, J.V.D., Small, I., Hubbard, R. (2003). The dynamics and characteristics of aeolian dust in dryland Central Asia: possible impacts on human exposure and respiratory health in the Aral Sea basin. Geographical Journal, 169(2), 142–157. https://doi.org/10.1111/1475-4959.04976

Wood, W.W., Sanford, W.E. (1995). Eolian transport, saline lake basins, and groundwater solutes. Water Resources Research, 31, 3121–3129. https://doi.org/10.1029/95WR02572

Published

2024-02-19

How to Cite

Simonova, Y. V. (2024) “Soil-geochemical assessment of salinization of the territory adjacent to the Kuchuk salt deposit (Altai Krai)”, Vestnik of Saint Petersburg University. Earth Sciences, 69(1). doi: 10.21638/spbu07.2024.110.

Issue

Section

Articles