Study of the anisotropy of frozen rocks at the Khanovei test site (Komi Republic) based on the data of controlled source radio-magnetotelluric soundings and electrical resistivity tomography

Authors

  • Nikita Yu. Bobrov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-3820-1356
  • Arseny A. Shlykov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Alexander K. Saraev St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-2990-9544
  • Vladislav S. Isaev Scientific Center of Arctic Research, 20, ul. Respubliki, Salekhard, 629008, Russian Federation https://orcid.org/0000-0002-5579-2178
  • Andrey I. Balakhnin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2023.405

Abstract

The results of a joint inversion of the data of controlled source radio-magnetotelluric soundings (CSRMT) and electrical resistivity tomography (ERT), obtained at the Khanovei permafrost test site near Vorkuta, are presented. The geological section in the work area is composed of Quaternary fluvio-glacial, lacustrine-glacial and alluvial deposits up to 60 m thick, overlying a sequence of sandstones, siltstones and mudstones of Permian age. The CSRMT survey was carried out using a grounded electrical line 480 m long as a source in the frequency range 1-1000 kHz. The results of various inversion options were compared: 1) isotropic one-dimensional (1D) inversion of CSRMT data; 2) isotropic separate two-dimensional (2D) inversion of CSRMT and ERT data; 3) joint anisotropic 1D inversion of CSRMT and ERT data. Based on the results of a joint anisotropic inversion of CSRMT data in the far and intermediate zones of the source and ERT data, a vertical anisotropy associated with horizontal layering of frozen Quaternary clay deposits in the depth range from 2 to 15-20 m was revealed and its parameters (horizontal and vertical resistivity and anisotropy coefficient) were determined. On the geoelectric section obtained from the ERT data, the thickness of the anisotropic layer of frozen clayey deposits is significantly overestimated. The middle part of the section, in the depth range from 15-20 to 60-70 m, is characterized by relatively low resistivity values (tens of ohmmeters). This is consistent with the results of previous studies, which established that the upper part of the Permian sediments is in a thawed state and is fractured and water-saturated. A high-resistivity layer (hundreds of ohmmeters) was revealed at the base of the geoelecric section according to CSRMT data. A significant increase in the resistivity of Permian rocks with depth is confirmed by the data of vertical electrical soundings previously performed in the Khanovey area.

Keywords:

permafrost, anisotropy of electrical properties, electrical resistivity tomography, radio-magnetotelluric soundings, controlled source

Downloads

Download data is not yet available.
 

References

Бердичевский, М. Н. и Дмитриев, В. И. (2009). Модели и методы магнитотеллурики. М.: Научный мир.

Бобачев, А. А., Горбунов, А. А., Модин, И. Н., Шевнин, В. А. (2006). Электротомография методом сопротивлений и вызванной поляризации. Приборы и системы разведочной геофизики, 2, 14-17.

Бороздин, Ю. Г. и Белкин, В. И. (1972). Отчет о работе Хановейской комплексной геофизической партии № 6/70-71 на Хановейской и Елец-Кечпельской площадях с целью поисков и оконтуривания предполагаемых синклинальных структур. М.: ФГБУ «Росгеолфонд».

Ваньян, Л. Л. (1965). Основы электромагнитных зондирований. М.: Недра.

Ершов, Э. Д. (2002). Общая геокриология. М.: Изд-во МГУ.

Иванов, П. В., Алексеев, Д. А., Бобачев, А. А., Пушкарев, П. Ю., Яковлев, А. Г. (2011). О комплексировании методов вертикального электрического зондирования и зондирования становлением поля в ближней зоне. Инженерные изыскания, 11, 42-51.

Каминский, А. Е., Ерохин, С. А., Шлыков, А. А. (2015). Совместная двумерная инверсия данных электротомографии и РМТ/АМТ. Геофизика, 4, 32-39.

Котов, П. И. и Гордеева, Г. И., ред. (2022). Пособие по Воркутинской геокриологической научно-учебной практике. М.: Изд-во МГУ.

Краев, А. П. (1965). Основы геоэлектрики. 2-е изд. Л.: Недра.

Рекомендации по определению физико-механических свойств мерзлых дисперсных грунтов геофизическими методами (1989). М.: Стройиздат.

Сараев, А. К., Симаков, А. Е., Шлыков, А. А. (2014). Метод радиомагнитотеллурических зондирований с контролируемым источником. Геофизика, 1, 18-25.

Федосеева, Н. И., Степанова, Л. К., Федоришин, И. Б. (2011). Подсчет эксплуатационных запасов подземных вод для хозяйственно-питьевого и технического водоснабжения железнодорожных станций Хановей и Чум. [отчет] М.: ФГБУ «Росгеолфонд».

Фролов, А. Д. (1998). Электрические и упругие свойства мерзлых пород и льдов. Пущино: ОНТИ ПНЦ РАН.

Шевнин, В. А., ред. (2012). Изучение анизотропии в методе сопротивлений: учеб. пособие. М.: Изд-во МГУ.

Шевнин, В. А., Бобачев, А. А., Модин, И. Н., Ялов, Т. В. (2013). Различие результатов гальванических и индуктивных методов, новые примеры для ДИП и БИЭП. Записки Горного института, 200, 104-107.

Шлыков, А. А. (2014). Программа для моделирования электромагнитного поля кабеля конечной длины (CS1D). Свидетельство о государственной регистрации программы для ЭВМ № 2014664164; заявл. 30.12.2014; зарег. 21.04.2015.

Bastani, M. (2001). EnviroMT - a new controlled source/radiomagnetotelluric system. PhD thesis. Uppsala: Uppsala University.

Briggs, M. A., Campbell, S., Nolan, J., Walvoord, M. A., Ntarlagiannis, D., Day-Lewis, F. D., Lane, J. W. (2017). Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes. Permafrost and Periglacial Processes, 28 (1), 52-65. https://doi.org/10.1002/ppp.1893

Candansayar, M. E. and Tezkan, B. (2008). Two-dimensional joint inversion of radiomagnetotelluric and direct current resistivity data. Geophysical Prospecting, 56, 737-749. https://doi.org/10.1111/j.1365-2478.2008.00695.x

Dahlin, T. (2001). The development of DC resistivity imaging techniques.Computers & Geosciences, 27, 1019-1029. https://doi.org/10.1016/S0098-3004(00)00160-6

Demirci, I., Candasayar, E. M., Vadidis, A., Soupios, P. (2017). Two-dimensional joint inversion of direct current resistivity, radio-magnetotelluric and seismic refraction data: An application from Bafra Plain, Turkey. Journal of Applied Geophysics, 139, 316-330. https://doi.org/10.1016/j.jappgeo.2017.03.002

Hauck, C. (2013). New concepts in geophysical surveying and data interpretation for permafrost terrain. Permafrost and Periglacial Processes, 24 (2), 131-137. https://doi.org/10.1002/ppp.1774

Jupp, D. L. B. and Vozoff, K. (1977). Resolving anisotropy in layered media by joint inversion. Geophysical Prospecting, 25, 460-470. https://doi.org/10.1111/j.1365-2478.1977.tb01181.x

Kalscheuer, T., Garcia, M., Meqbel, N., Pedersen, L. B. (2010). Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data. Geophysical Journal International, 182, 1174-1188. https://doi.org/10.1111/j.1365-246X.2010.04686.x

Key, K. (2016). MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magneto-telluric data. Geophysical Journal International, 207 (1), 571-588. https://doi.org/10.1093/gji/ggw290

Kneisel, C., Hauck, C., Fortier, R., Moorman, B. (2008). Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes, 19 (2), 157-178. https://doi.org/10.1002/ppp.616

Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., Wilkinson, P. B. (2013). Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics, 95, 135-156. https://doi.org/10.1016/j.jappgeo.2013.02.017

Maillet, R. (1947). The fundamental equations of electrical prospecting. Geophysics, 12, 529-556. https://doi.org/10.1190/1.1437342

Marquardt, D. W. (1963). An algorithm for least-squares estimation of non-linear parameters. SIAM Journal on Applied Mathematics, 11, 431-441. https://doi.org/10.1137/0111030

Raiche, A. P., Jupp, D. L. B., Rutter, H., Vozoff, K. (1985). The joint use of coincident loop transient electromagnetic and Schlumberger sounding to resolve layered structures. Geophysics, 50, 1618-1627. https://doi.org/10.1190/1.1441851

Rossi, M., Dal Cin, M., Picotti, S., Gei, D., Isaev, V. S., Pogorelov, A. V., Gorshkov, E. I., Sergeev, D. O., Kotov, P. I., Giorgi, M., Rainone, M. L. (2022). Active layer and permafrost investigations using geophysical and geocryological methods - a case study of the Khanovey area, near Vorkuta, in the NE European Russian Arctic. Frontiers in Earth Science, 10:910078. https://doi.org/10.3389/feart.2022.910078

Saraev, A. K., Shlykov, A. A., Tezkan, B. (2022). Application of the controlled source radiomagnetotellurics (CSRMT) in the study of rocks overlying kimberlite pipes in Yakutia/Siberia. Geosciences, 12 (1), 34. https://doi.org/10.3390/geosciences12010034

Saraev, A. K., Shlykov, A. A., Bobrov, N. Y. (2023). Tensor CSRMT system with horizontal electrical dipole sources and prospects of its application in Arctic permafrost regions. Eng, 4 (1), 569-580. https://doi.org/10.3390/eng4010034

Saraev, A., Simakov, A., Shlykov, A., Tezkan, B. (2017). Controlled-source radiomagnetotellurics: A tool for near surface investigations in remote regions. Journal of Applied Geophysics, 146, 228-237. https://doi.org/10.1016/j.jappgeo.2017.09.017

Shlykov, A. A. and Saraev, A. K. (2015). Estimating the Macroanisotropy of a Horizontally Layered Section from Controlled Source Radiomagnetotelluric Soundings. Izvestiya, Physics of the Solid Earth, 51 (4): 583-601. https://doi.org/10.1134/S1069351315040102

Shlykov, A., Saraev, A., Agrahari, S. (2019). Study of the anisotropy of horizontally layered section using data of the controlled source radiomagnetotellurics. Geophysica, 54 (2), 3-21.

Shlykov, A., Saraev, A., Agrahari, S., Tezkan, B., Singh, A. (2021). One-dimensional laterally constrained joint anisotropic inversion of CSRMT and ERT Data. Journal of Environmental and Engineering Geophysics, 6, 35-48. https://doi.org/10.32389/JEEG20-060

Shlykov, A., Saraev, A., Tezkan, B. (2020). Study of a permafrost area in the northern part of Siberia using controlled source radiomagnetotellurics. Pure and Applied Geophysics, 177 (12), 5845-5859. https://doi.org/10.1007/s00024-020-02621-x

Tananaev, N., Isaev, V., Sergeev, D., Kotov, P., Komarov, O. (2021). Hydrological connectivity in a permafrost tundra landscape near Vorkuta, North-European Arctic Russia. Hydrology, 8 (3), 106. https://doi.org/10.3390/hydrology8030106

Zonge, K. L. and Hughes, L. J. (1991). Controlled-source audio-frequency magnetotellurics. In: M. N. Nabighian, ed., Electromagnetic methods in applied geophysics. SEG, 2. 713-809. https://doi.org/10.1190/1.9781560802686.ch9

Published

2023-12-10

How to Cite

Bobrov, N. Y. (2023) “Study of the anisotropy of frozen rocks at the Khanovei test site (Komi Republic) based on the data of controlled source radio-magnetotelluric soundings and electrical resistivity tomography”, Vestnik of Saint Petersburg University. Earth Sciences, 68(4). doi: 10.21638/spbu07.2023.405.

Issue

Section

Articles