Mechanisms for the formation of density inversions in areas of regular deep convection in the Greenland Sea
DOI:
https://doi.org/10.21638/spbu07.2023.407Abstract
In this work, density inversions in the Greenland Sea, which precede the development of deep convection, were identified from in-situ data. The mechanisms of their formation were considered, for which data from the GLORYS12V1 ocean reanalysis and the ERA5 atmospheric reanalysis were used. In particular, the surface inflow of warm Atlantic water and cold water from the East Greenland Current was identified, the role of heat transport from the ocean to the atmosphere and the freshwater balance of the sea surface for two periods: the 1990s (1993, 1994, 1998) and the 2010s (2008, 2011, 2013) was determined. The following main mechanisms of density inversions formation were identified: heat transport from the ocean to the atmosphere, surface water inflows, and positive evaporation-precipitation differences. The formation of density inversions can also be determined by a combination of different mechanisms. Heat fluxes from the ocean to the atmosphere are the main source of inversions and are observed for 93% of all profiles with inversions. In the 1990s, surface water fluxes were the second most important factor, with evaporation- precipitation differences being the third. In the 2010s, however, the last two factors are reversed and evaporation dominates significantly more than precipitation. Increase of contribution of this factor occurs together with increase of number of salinity inversions in 2010th in comparison with 1990th and is connected with variability of dominating winds in this region. The results provide a basis for further investigation of the causes and interannual variability of deep convection in the Greenland Sea.
Keywords:
Greenland Sea, deep convection, density inversions, potential instability
Downloads
References
Алексеев, Г. В., Богородский, П. В., Нагурный, А. П. (1989). Структура термохалинных полей в районе циклонической циркуляции и поднятия донных вод Гренландского моря. В: Ю. В. Николаева, Г. В. Алексеева, под ред., Структура и изменчивость крупномасштабных океанологических процессов и полей в Норвежской энергоактивной зоне. Л.: Гидрометеоиздат, 37-43.
Алексеев, Г. В., Кузмина, С. И., Глок, Н. И., Вязилова, А. Е., Иванов, Н. Е., Смирнов, А. В. (2017). Влияние Атлантики на потепление и сокращение морского ледяного покрова в Арктике. Лёд и снег, 57 (3), 381-390. https://doi.org/10.15356/2076-6734-2017-3-381-390
Башмачников, И. Л., Федоров, А. М., Весман, А. В., Белоненко, Т. В., Колдунов, А. В., Духовской, Д. C. (2018). Термохалинная конвекция в субполярных морях Северной Атлантики и Северо-Европейского бассейна СЛО по спутниковым и натурным данным. Ч. 1: Локализация областей конвекции. Современные проблемы дистанционного зондирования Земли из космоса, 15 (7), 184-194. https://doi.org/10.21046/2070-7401-2018-15-7-184-194
Башмачников, И. Л., Федоров, А. М., Весман, А. В., Белоненко, Т. В., Духовской, Д. С. (2019). Термохалинная конвекция в субполярных морях Северной Атлантики и Северо-Европейского бассейна СЛО по спутниковым и натурным данным. Ч. 2: Индексы интенсивности конвекции. Современные проблемы дистанционного зондирования Земли из космоса, 16 (1), 191-201. https://doi.org/10.21046/2070-7401-2019-16-1-191-201
Каледина, А. С. и Башмачников, И. Л. (2023). Характеристики плотностных инверсий в Гренландском море в холодный сезон за 1993-2019 годы. Морской гидрофизический журнал, 39 (1), 21-30. https://doi.org/10.29039/0233-7584-2023-1-21-30
Федоров, А. М., Башмачников, И. Л., Белоненко, Т. В. (2018). Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингера. Вестник Санкт-Петербургского университета. Науки о Земле, 63 (3), 345-362. https://doi.org/10.21638/spbu07.2018.306
Bashmachnikov, I. L., Fedorov, A. M., Golubkin, P. A., Vesman, A. V., Selyuzhenok, V. V., Gnatiuk, N. V., Bobylev, L. P., Hodges, K. I., Dukhovskoy, D. S. (2021). Mechanisms of interannual variability of deep convection in the Greenland Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 174, 1-20. https://doi.org/10.1016/j.dsr.2021.103557
Brakstad, A., Våge, K., Håvik, L., Moore, G. W. K. (2019). Water Mass Transformation in the Greenland Sea during the Period 1986-2016. Journal of Physical Oceanography, 49 (1), 121-140. https://doi.org/10.1175/JPO-D-17-0273.1
Broecker, W. S. (1991). The Great Ocean Conveyor. Oceanography, 4 (2), 79-89. https://doi.org/10.5670/oceanog.1991.07
Chu, P. C. (1991). Geophysics of Deep Convection and Deep Water Formation in Oceans. In: P. C. Chu, J. C. Gascard, eds, Deep Convection and Deep Water Formation in the Oceans. Elsevier, 3-16. https://doi.org/10.1016/S0422-9894(08)70057-6
Clarke, R. A. and Gascard, J.-C. (1983). The formation of Labrador Sea water. Part 1: Large-scale processes. Journal of Physical Oceanography, 13, 1764-1788. https://doi.org/10.1175/1520-0485(1983)013<1764:TFO LSW>2.0.CO;2
de Boyer Montegut, C., Madec, G., Fischer, A. S., Lazar, A., Iudicone, D. (2004). Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109, C12003. https://doi.org/10.1029/2004JC002378
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., Edson, J. B. (2003). Bulk Parameterization of Air - Sea Fluxes: Updates and Verification for the COARE Algorithm. Journal of Climate, 16 (4), 571-591. https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
Fedorov, A. M. and Bashmachnikov, I. L. (2020). Accuracy of the deep convection intensity from a limited number of casts. Dynamics of Atmospheres and Oceans, 92 (101164). https://doi.org/10.1016/j.dynatmoce.2020.101164
Germe, A., Houssais, M. -N., Herbaut, C., Cassou, C. (2011). Greenland Sea sea ice variability over 1979-2007 and its link to the surface atmosphere. Journal of Geophysical Research, 116 (C10034). https://doi.org/10.1029/2011JC006960
Johannessen, O. M., Lygre, K., Eldevik, T. (2005). Convective chimneys and plumes in the Northern Greenland Sea. In: H. Drange, T. Dokken, T. Furevik, R. Gerdes, W. Berger, eds, The Nordic Seas: An Integrated Perspective, American Geophysical Union, 251-272.
Kara, A. B., Rochford, P. A., Hurlburt, H. E. (2003). Mixed layer depth variability over the global ocean. Journal of Geophysical Research, 108 (C3), 3079. https://doi.org/10.1029/2000JC000736
Latif, M., Böning, C., Willebrand, J., Biastoch, A., Dengg, J., Keenlyside, N., Schweckendiek, U., Madec, G. (2006). Is the Thermohaline Circulation Changing? Journal of Climate, 19 (18), 4631-4637. https://doi.org/10.1175/JCLI3876.1
Marshall, J. and Schott, F. (1999). Open-ocean convection: Observations, theory, and models. Reviews of Geophysics, 37 (1), 1-64. https://doi.org/10.1029/98RG02739
Moore, G. W. K., Våge, K., Pickart, R. S., Renfrew, I. A. (2015). Decreasing intensity of open-ocean convection in the Greenland and Iceland seas. Nature Climate Change, 5, 877-882. https://doi.org/10.1038/nclimate2688
Mysak, L. A., Manak, D. K., Marsden, R. F. (1990). Sea-ice anomalies observed in the Greenland and Labrador Seas during 1901-1984 and their relation to an interdecadal Arctic climate cycle, Climate Dynamics, 5, 111-133. https://doi.org/10.1007/BF00207426
Peterson, B. J., McClelland, J., Curry, R., Holmes, R. M., Walsh, J. E., Aagaard, K. (2006). Trajectory shifts in the Arctic and subarctic freshwater cycle. Science, 313 (5790), 1061-1066. https://doi.org/10.1126/science.1122593
Pithan, F., Svensson, G., Caballero, R., Chechin, D., Cronin, T. W., Ekman, A. M. L., Neggers R., Shupe, M. D., Solomon A., Tjernström, M., Wendisch, M. (2018). Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nature Geoscience, 11, 805-812. https://doi.org/10.1038/s41561-018-0234-1
Selyuzhenok, V., Bashmachnikov, I., Ricker, R., Vesman, A., Bobylev, L. (2020). Sea ice volume variability and water temperature in the Greenland Sea. The Cryosphere, 14 (2), 477-495. https://doi.org/10.5194/tc-14-477-2020
Våge, K., Papritz, L., Håvik, L., Spall, M. A., Moore, G. W. K. (2018). Ocean convection linked to the recent ice edge retreat along east Greenland. Nature Сommunications, 9 (1), 1287. https://doi.org/10.1038/s41467-018-03468-6
Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., Van Den Broeke, M. R. (2016). Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nature Сommunications, 7, 10525. https://doi.org/10.1038/ncomms10525
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.