The content of nutrients, lignin and cellulose in plants and lichens in the forest-tundra ecotone of the Khibiny mountain massif

Authors

  • Natalia A. Artemkina Institute of the North Industrial Ecology Problems of the Kola Scientific Center RAS, 14а, Akademgorodok, Murmansk region, Apatity, 184209, Russian Federation
  • Tatyana A. Sukhareva Institute of the North Industrial Ecology Problems of the Kola Scientific Center RAS, 14а, Akademgorodok, Murmansk region, Apatity, 184209, Russian Federation
  • Ekaterina A. Ivanova Institute of the North Industrial Ecology Problems of the Kola Scientific Center RAS, 14а, Akademgorodok, Murmansk region, Apatity, 184209, Russian Federation
  • Vadim E. Smirnov Center for Forest Ecology and Productivity RAS, 84/32, Prophsoyuznaya ul., 117997, Moscow, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2023.109

Abstract

The results of studies of the chemical composition of plants and lichens in the altitude gradient on the slope of Yumechorr of the Khibiny mountain massif (Murmansk region) are presented. The species specificity of the accumulation of macro- and microelements by the assimilating organs of plants and lichens in the in the main altitude zones is shown. The leaves of Betula pubescens and Vaccinium myrtillus are the most rich of elements of mineral nutrition. Lichens are characterized by a low content of N, Ca, K, P, Mg, S, as well as Zn and Mn and high - Fe, Cu, Ni. In spruce and pine needles, similar patterns of the distribution of elements by age classes were revealed. Changes in the content of nitrogen, mineral elements, secondary metabolites in the altitude gradient in the assimilating organs of plants and lichens, during the transition from the forest belt to the mountain forest, have been established. It has been established that with increasing growth height, the N content increases in Pinus sylvestris needles, in the leaves of Arctostaphyllos uva-ursi, in the leaves of the current year Empetrum hermaphroditum. Plants growing in the mountain tundra and forest tundra are characterized by a high content of K. The Zn content also increases with increasing absolute height in the conifers/leaves of P. sylvestris, B. pubescens, V. uliginosum. During the transition from the forest belt to the mountain tundra, the content of Ca and Mg decreases in plant leaves. In the leaves of E. hermaphroditum, minimal concentrations of Mn were also detected in the mountain tundra. The content of lignin and cellulose in the leaves of shrubs, with the exception of V. myrtillus, in the belt of coniferous forests is lower than in the belt of birch forests and tundra. The content of lignin in the leaves of B. nana and B. pubescens increases, and cellulose practically does not change with an increase in absolute height in the Khibiny Mountains. Accumulation of lignin is observed in needles of P.sylvestris in the belt of birch woodlands.

Keywords:

mountain ecosystems, plants, leaves/needles, lichens, elemental composition, lignin, cellulose, Murmansk region

Downloads

Download data is not yet available.
 

References

Артёмкина, Н. А. (2010). Содержание фенольных соединений в V. vitis-idaea L. сосновых лесов Кольского полуострова. Химия растительного сырья, 3, 153-160.

Артёмкина, Н. А., Орлова, М. А., Лукина, Н. В. (2016). Химический состав хвои Juniperus sibirica (CUPRESSACEAE) в экотоне лес - тундра, Хибинские горы. Экология, 4, 243-250. https://doi.org/10.7868/S0367059716040077

Базилевич, Н. И. и Титлянова, А. А. (2008). Биотический круговорот на пяти континентах: азот и зольные элементы в природных наземных экосистемах. Новосибирск: Изд-во СО РАН.

Боровичёв, Е. А. и Королёва, Н. Е., под ред. (2022). Хибины: природа и человек. СПб.: Свое издательство.

Владыченский, А. С. и Абысова, О. Н. (2006). Элементный состав растительных сообществ горно-тундрового пояса юго-западной части Хибин. Вестник Московского университета. Серия 17. Почвоведение, 4, 10-18.

Куваев, В. Б. (2006). Флора субарктических гор Евразии и высотное распределение ее видов. М.: Т-во научных изданий КМК.

Лукина, Н. В. и Никонов, В. В. (1996). Биогеохимические циклы в лесах Севера в условиях аэротехногенного загрязнения. В 2 ч. Ч. 2. Апатиты: КНЦ РАН.

Лукина, Н. В., Полянская, Л. М., Орлова, М. А. (2008). Питательный режим почв северотаежных лесов. М.: Наука.

Лукина, Н. В., Сухарева, Т. А., Исаева, Л. Г. (2005). Техногенные дигрессии и восстановительные сукцессии в северотаежных лесах. М.: Наука.

Манаков, К. Н. и Никонов, В. В. (1979). Закономерности биологического круговорота минеральных элементов и почвообразование в биогеоценозах трех горно-растительных поясов. В: Почвообразование в биогеоценозах трех горно-растительных поясов Хибинских гор. Апатиты: Кол. фил. АН СССР, 65-94.

Переверзев, В. Н. (2004). Лесные почвы Кольского полуострова. М.: Наука.

Переверзев, В. Н. (2010). Генетические особенности почв природных поясов Хибинских гор (Кольский полуостров). Почвоведение, 5, 548-557.

Пугачев, А. А. и Тихменев, Е. А. (2017). Консервация растительного вещества и почвообразование в экосистемах зональных тундр крайнего северо-востока Азии. Arctic Environmental Research, 3. 255-264. https://doi.org/10.17238/issn2541-8416.2017.17.3.255

Раменская, М. Л. (1974). К типологии лесотундровых и горных березняков. Ботанические исследования в Субарктике. Апатиты: Кол. фил. АН СССР.

Сухарева, Т. А. (2018). Элементный состав зеленых мхов фоновых и техногенно нарушенных территорий. Ученые записки Петрозаводского государственного университета, 3 (172), 89-96. https://doi.org/10.15393/uchz.art.2018.130

Шиятов, С. Г., Терентьев, М. М., Фомин, В. В. (2005). Пространственно-временная динамика лесотундровых сообществ на Полярном Урале. Экология, 2, 83-90.

Шляков, Р. Н. (1961). Флора листостебельных мхов Хибинских гор. Мурманск: Мурманское книжн. изд-во.

Шмакова, Н. Ю. и Ермолаева, О. В. (2017). Рост и накопление массы Polytrichum commune в лесном поясе Хибин. Ученые записки Петрозаводского государственного университета, 6 (167), 38-44.

Шмакова, Н. Ю., Ушакова, Г. И., Костюк, В. И. (2008). Горно-тундровые сообщества Кольской Субарктики (эколого-физиологический аспект). Апатиты: КНЦ РАН.

Яковлев, Б. А. (1961). Климат Мурманской области. Мурманск: Мурманское книжн. изд-во.

Aerts, R. (2006). The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94 (4), 713-724.

Aerts, R., van Bodegom, P. M., Cornelissen, J. H. C. (2012). Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytologist, 196 (1), 181-188.

Blanco, J. A., Imbert, J. B., Castillo, F. J. (2011). Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry, 106, 3, 397-414.

Cornelissen, J. H. C., van Bodegom, P. M., Aerts, R., Callaghan, T. V., van Logtestijn, R. S. P., Alatalo, J., Chapin, F. S., Gerdol, R., Gudmundsson, J., Gwynn-Jones, D., Hartley, A. E., Hik, D. S., Hofgaard, A., Jónsdóttir, I. S., Karlsson, S., Klein, J. A., Laundre, J., Magnusson, B., Michelsen, A., Molau, U., Onipchenko, V. G., Quested, H. M., Sandvik, S. M., Schmidt, I. K., Shaver, G. R., Solheim, B., Soudzilovskaia, N. A., Stenström, A., Tolvanen, A., Totland, Ø., Wada, N., Welker, J. M., Zhao, X., Team, M. O. L. (2007). Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 10, 7, 619-627. https://doi.org/10.1111/j.1461-0248.2007.01051.x

Fisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradi- ent in the Peruvian Andes. Oecologia, 172, 3, 889-902.

Friedland, A. J., Hawley, G. J., Gregory, R. A. (1988). Red spruce (Picea rubens Sarg.) foliar chemistry in Northern Vermont and New York, USA. Plant and Soil, 105, 189-193.

Gallet, C. and Lebreton, P. (1995). Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biology and Biochemistry, 27, 157-165.

Gehrke, C., Johanson, U., Callaghan, T. V., Chadwick, D., Robinson, C. H. (1995). The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. Oikos, 72 (2), 213-222.

Hoch, G. and Körner, C. (2005). Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology, 19 (6), 941-951.

Hoch, G. and Körner, C. (2012). Global patterns of mobile carbon stores in trees at the high-elevation tree line. Global Ecology and Biogeography, 21, 8, 861-871.

Husson, F., Le, S., Pages, J. (2017). Exploratory multivariate analysis by example using R. Chapman & Hall/ CRC.

Josefsen, T. D., Aagnes, T. H., Mathiesen, S. D. (1996). Influence of diet on the morphology of the ruminal papillae in reindeer calves (Rangifer tarandus tarandus L.). Rangifer, 16 (3), 119-128.

Körner, C. (1989). The nutritional status of plants from high altitudes. Oecologia, 81 (3), 379-391.

Li, M. H., Xiao, W. F., Shi, P. L., Wang, S. G., Zhong, Y. D., Liu, X. L., Wang, X. D., Cai, X. H., Shi, Z. M. (2008).

Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations. Plant, Cell and Environment, 31 (10), 1363-1521.

Mandre, M. (2002). Relationships between lignin and nutrients in Picea abies L. under alkaline air pollution. Water, Air and Soil Pollution, 133 (1-4), 363-379.

Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C., Mazzafera, P. (2010). Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. Journal of Integrative Plant Biology, 52 (4), 360-376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Zytkowiak, R., Reich, P. B., Karolewski, P. (1998). Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Functional Ecology, 12 (4), 573-590.

Orlova, M. A., Lukina, N. V., Tutubalina, O. V., Smirnov, V. E., Isaeva, L. G., Hofgaard, A. (2013). Soil nu- trient’s spatial variability in forest-tundra ecotones on the Kola Peninsula, Russia. Biogeochemistry, 113 (1-3), 283-305. https://doi.org/10.1007/s10533-012-9756-6

Osono, T. and Takeda, H. (2004). Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research, 19 (6), 593-602.

Proctor, J., Alexeeva-Popova, N. V., Kravkina, I. M., Yurtsev, B. A., Drozdova, I. V., Kataeva, M. N. (2004). Arctic ultramafics: new investigations on Polar Ural vegetation. In: Proc.Int. Congress on ultramaf- ic (serpentine) ecology. Ultramafics rocks: their soils, vegetation and fauna. London: Science reviews, 121-135.

R Core Team. R: (2020). A language and environment for statistical computing. R Foundation for Statistical Computing. [online] Austria, Vienna. Available at: http://www.R-project.org [Accessed 02.09.2022].

Richardson, A. D. (2004). Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant and Soil, 260 (1-2), 291-299.

Rowland, A. P. and Roberts, J. D. (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods.Communications in Soil Science and Plant Analysis, 25 (3-4), 269-277.

Sariyildiz, T. and Anderson, J. M. (2006).Intra-specific variation in cell wall constituents of needle age classes of Pinus sylvestris in relation to soil fertility status in Southwest England. Silva Fennica, 40 (1), 15-26.

Severson, K. E. and Uresk, D. W. (1988). Influence of ponderosa pine overstory on forage quality in the Black Hills, South Dakota. Western North American Naturalist, 48 (1), 78-82.

Soethe, N., Lehmann, J., Engels, C. (2008). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology, 24 (4), 397-406.

Straková, P., Anttila, J., Spetz, P., Kitunen, V., Tapanila, T., Laiho, R. (2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant and Soil, 335 (1-2), 501-520. https://doi.org/10.1007/s11104-010-0447-6

Wardle, D. A., Nilsson, M.-C., Zackrisson, O., Gallet, C. (2003). Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35 (6), 827-835. https://doi.org/10.1016/S0038-0717(03)00118-4

Wieser, G., Matyssek, R., Luzian, R., Zwerger, P., Pindur, P., Oberhuber, W., Gruber, A. (2009). Effects of atmospheric and climate change at the timberline of the Central European Alps. Annals of Forest Science, 66 (4), 402.

Zagoskina, N. V., Dubravina, G. A., Alyavina, A. K., Goncharuk, E. A. (2003). Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures.Russian Journal of Plant Physiology, 50 (2), 270-275. https://doi.org/10.1023/A:1022945819389

Published

2023-01-25

How to Cite

Artemkina, N. A. (2023) “The content of nutrients, lignin and cellulose in plants and lichens in the forest-tundra ecotone of the Khibiny mountain massif”, Vestnik of Saint Petersburg University. Earth Sciences, 68(1). doi: 10.21638/spbu07.2023.109.

Issue

Section

Articles