Advective Components Determination of Mass, Heat and Substances Exchange According to Natural Data at the Mouth of the Black River (Sevastopol Region)
DOI:
https://doi.org/10.21638/spbu07.2023.107Abstract
Physical and mathematical modeling of nonstationary exchange processes in the zone of interaction of heterogeneous waters at the mouths of rivers remains problematic. Therefore, the paper proposes and tests a method for estimating multidirectional water, heat and salts consumption in this zone based on field data. For this purpose, a program of long-term expeditionary research was developed, full-scale measurements were carried out in 2017–2021, an algorithm and a calculation program were developed and methods for quantifying the components of metabolic processes were tested according to full-scale studies in 2019 at the mouth of the Black river, in the zone of interaction of river water and desalinated water of the Sevastopol Bay. The article provides a methodology and an example of the assessment of water, salt and heat exchange for a representative expedition carried out under average hydrometeorological conditions during the low-water periods. Calculations are made by the analytical method, using standard programs, and by the graphical method, by graphical interpolation and planimetry of areas. The discrepancies between the results obtained by different methods were 2–7 %, which indicates the possibility of using this technique to process long-term data with sufficient accuracy. The proposed method for quantifying the components of exchange processes based on natural data can be used in any formation of different types of river mouths for balance calculations, forecasting possible changes in their state and adjacent parts of the sea under the influence of natural and anthropogenic factors, as well as for calibration and verification of models.
Keywords:
water exchange, salt exchange, heat exchange, algorithm, methodology, mouth of the Chernaya River, interaction zone
Downloads
References
Антоненков, Д. А. (2020). Измерительный комплекс для исследования динамических характеристик и структуры течения водного потока в прибрежной морской зоне. Известия вузов. Приборостроение, 63 (12), 1112-1118. https://doi.org/10.17586/0021-3454-2020-63-12-1112-1118
Ломакин, П. Д., Чепыженко, А. И., Гребнева Е. А. (2020). Поля океанологических характеристик в Aбрамовой бухте (Cевастополь) в ноябре 2019 года. Экологическая безопасность прибрежной и шельфовой зон моря, 2, 68-79. https://doi.org/10.22449/2413-5577-2020-2-68-79
Миньковская, Р. Я. (2020). Комплексные исследования разнотипных морских устьев рек (на примере морских устьев рек северо-западной части Черного моря). [online] Севастополь, ФГБУН ФИЦ МГИ. Доступно на: http://mhi-ras.ru/assets/files/Minkovskaya_Kompleksnye_issledovaniya.pdf [Дата доступа 10.01.2020]. https://doi.org/10/22449/978-5-6043409-2-9
Мискевич, И. В. (2019). Специфика природных процессов в приливных устьях малых рек Белого моря. Проблемы региональной экологии, 4, 37-41.
Михайлов, В. Н. (1998). Гидрология устьев рек. М.: Изд-во МГУ.
Морозов, А. Н., Лемешко, Е. М., Шутов, С. А., Зима, В. В. (2012). Течения в Севастопольской бухте по данным ADCP-наблюдений (июнь 2008 года). Морской гидрофизический журнал, 3, 25-30.
Панченко, Е. Д., Льюменс, М., Лебедева, С. В. (2020). Моделирование гидродинамических процессов в приливном устье реки Онеги. В: Четвертые Виноградовские чтения. Гидрология от познания к мировоззрению: сборник докладов международной конференции памяти Ю. Б. Виноградова. СПб.: BBM, 135-140.
Симов, В. Г., Морозов, В. И., Фомина, И. Н. (2016). Обменные процессы в проливах между эстуариями и морями. Севастополь: НПЦ «ЭКОСИ-Гидрофизика».
Слепчук, К. А., Миньковская, Р. Я., Антоненков, Д. А., Чепыженко, А. И. (2021). Оценка обменных процессов в морских устьях рек по натурным данным (на примере устья р. Черной). В: Моря России: Год науки и технологий в РФ - Десятилетие наук об океане ООН: тезисы докладов всероссийской научной конференции. Севастополь, 457.
Antonenkov, D. A. (2020). Water flow speed determining using visualization methods. Scientific Visualization, 12 (5), 102-111. https://doi.org/10.26583/sv.12.5.09
Chepyzhenko, A. A. and Chepyzhenko, A. I. (2017). Methods and device for in situ total suspended matter (TSM) monitoring in natural waters’ environment. In: 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics: Proc. SPIE 10466, 104663G. https://doi.org/10.1117/12.2287127
Dovhyi, I. I., Kremenchutskii, D. A., Bezhin, N. A., Kozlovskaia, O. N., Milyutin, V. V., Kozlitin, E. A. (2020). Distribution of 137Cs in the Surface Layer of the Black Sea in Summer 2017. Рhysical oceanography, 27 (2), 152-160. https://doi.org/10.22449/0233-7584-2020-2-166-175
Eremina, Е. S. and Evstigneev, V. P. (2020).Inter-Annual Variability of Water Exchange between the Azov Sea and the Sivash Bay through the Tonky Strait. Physical Оceanography, 27 (5), 489-500. https://doi.org/10.22449/1573-160X-2020-5-489-500
Medvedev, I. P. and Kulikov, E. A. (2016). Spectrum of mesoscale sea level oscillations in the Northern Black Sea: tides, seiches, and inertial oscillations. Oceanology, 56, 6-13. https://doi.org/10.1134/S0001437016010094
Minkovskaya, R. Y. and Demidov, A. N. (2014). Water, salt, and heat exchange through the Kinburn Strait of the Dnieper-Bug estuary. Oceanology, 54 (5), 567-575. https://doi.org/10.1134/S0001437014050117
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.