Environmental assessment of risks associated with the Ordovician Dictyonema shale in the eastern part of the Baltic Klint

Authors

  • Сергей Васильевич Лебедев St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Станислав Викторович Дуброва St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Петр Владимирович Федоров St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Виталий Владимирович Куриленко St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Виллингтон Сиабато Department of Geography, Universidad Nacional de Colombia, Carrera 30 No. 45–03, 212, Bogota D.C., 111321, Colombia

DOI:

https://doi.org/10.21638/11701/spbu07.2018.202

Abstract

The results of research considered in this article made it possible to expand the understanding of the environmental risks associated with the highly radioactive bituminous argillites of the Baltic Sea region. The natural patterns of the distribution of natural radionuclides 226Ra, 232Th and 40K are established along the strike and thickness of layers. The average value of the effective specific activity (ESA) for all samples in the Koporka River valley amounted 1270 Bq/kg. The minimum value of ESA was 650 Bq/kg (the closest to the seam roof level), and the maximum value was 3750  Bq/kg (the second from the seam floor level). Conversion to mass fractions of natural radionuclides (NRN) showed that the average content of uranium in the sample amounted up to 90.7 g/t, thorium up to 11.4 g/t and of potassium up to 4.1%. The high heterogeneity of the content distribution of NRN along the strike of the Dictyonema shale seam was confirmed by studies of separate outcrops of highly radioactive rocks along the banks of the Tosna River. In general, the level of the argillites radioactivity has abnormally high value and exceeds the natural background more than ten times. The average annual values of the effective dose amounted from 5,8 to 10,7 mSv/year, that should be classified as the territories of emergency ecological danger and zones of ecological disaster.

Downloads

Download data is not yet available.
 

References


References

Agbalagba, E. O., Onoja, R. A., 2011. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. Journal of Environmental Radioactivity 103 (7), 667–671. https://doi.org/10.1016/j.jenvrad.2011.03.002.

Alexandrova, T. V., 1971. Fiziko-geograficheskoe opisanie i ekonomicheskaia kharakteristika [Geographical description and economic characteristics], in: Geologiia SSSR [Geology of the USSR] / Sidorenko, A.V., Selivanova, V.A., Kofman, V. S. (Eds.), Volume 1, Leningradskaia, Pskovskaia i Novgorodskaia oblasti [Leningrad, Pskov and Novgorod regions]. Nedra, Moscow, 26–38. (In Russian)

Balahonova, A. S., 2014. Renievoe orudenenie diktionemovykh slantsev Pribaltiiskogo basseina (Leningradskaia oblast') [Rhenium mineralization of the Dictyonema shale of the Baltic basin (Leningrad region)]. http://earthpapers.net/renievoe-orudenenie-diktionemovyh-slantsev-pribaltiyskogo-basseyna. (In Russian)

Baykara, O., Karatepe, S., Dogrub, M., 2011. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements 46 (1), 153–158. https://doi.org/10.1016/j.radmeas.2010.08.010.

Belyaev, A. M., Ivanyukovich, G. A., Kurilenko, V. V., Haykovich, I. M., 2003. Radioekogeologiia [Radioecology]: teaching aid. Publishing House of St. Petersburg University, St. Petersburg. (In Russian)

Clouvas, A., Xanthos, S., Antonopoulos-Domis, M., 2000. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil. Health Physics 78 (3), 295–302.

Cooper, R. A., Sadler, P. M., 2012. The Ordovician Period, in: The Geologic Time Scale / Gradstein, F. M., Ogg, J. G. (Eds.). Elsevier, 489–524.

Gasser, E., Nachab, A., Nourreddinea, A., Roya, Ch., Sellama, A., 2014. Update of 40K and 226Ra and 232Th series γ-to-dose conversion factors for soil. Journal of Environmental Radioactivity 138, 68–71. https://doi.org/10.1016/j.jenvrad.2014.08.002.

Guidotti, L., Carini, F., Rossi, R., Gatti, M., Cenci, R. M., Beone, G. M., 2015. Gamma-spectrometric measurement of radioactivity in agricultural soils of the Lombardia region, northern Italy. Journal of Environmental Radioactivity 142, 36–44. https://doi.org/10.1016/j.jenvrad.2015.01.010.

Hints R., Hade S., Soesoo A., Voolma M., 2014. Depositional framework of the East Baltic Tremadocian black shale revisited. GFF 136 (3), 464–482. https://doi.org/10.1080/11035897.2013.866978.

ICRU, International Commission on Radiation Units and Measurements, 1994. Gamma-ray spectrometry in the environment. Report 53. International Commission on Radiation Units and Measurements, Bethesda, Maryland.

Isinkaye, O. M., 2008. Radiometric assessment of natural radioactivity levels of bituminous soil in Agbabu, southwest Nigeria. Radiation Measurements 43 (1), 125–128. https://doi.org/10.1016/j.radmeas.2007.11.005.

Joshua, E. O., Ademola, J. A., Akpanowo, M. A., Oyebanjo, O. A., Olorode, D. O., 2009. Natural radionuclides and hazards of rock samples collected from Southeastern Nigeria. Radiation Measurements 44 (4), 401–404. https://doi.org/10.1016/j.radmeas.2009.04.002.

Lee, S. K., Wagiran, H., Ramli, A. T., Apriantoro, N. H., Wood, A. K., 2009. Radiological monitoring: terrestrial natural radionuclides in Kinta District, Perak, Malaysia. Journal of Environmental Radioactivity 100, 368–374. https://doi.org/10.1016/j.jenvrad.2009.01.001.

Murty, V. R. K., Karunakara, N., 2008. Natural radioactivity in the soil samples of Botswana. Radiation Measurements 43 (9–10), 1541–1545. https://doi.org/10.1016/j.radmeas.2008.10.004.

NRB-99/2009, Radiation Safety Regulations, 2009. Hygienic regulations and standarts (Sanitary rules and norms 2.6.1.2523–09/2009). Ministry of Healthcare of the Russian Federation, Moscow.

OSPORB-99/2010, Basic Sanitary Rules of Radiation Safety, 2010. (Sanitary Rules 1.2.6.1.2612–10). Ministry of Healthcare of the Russian Federation, Moscow.

Popov, L. E., Khazanovich, K. K., Borovko N. G., Sergeev, S. P., Sobolevskaya, R. F., 1989. Opornye razrezy i stratigrafiia kembro-ordovikskoi fosforitonosnoi obolovoi tolshchi na severo-zapade Russkoi platformy [The cross-sections and stratigraphy of Cambrian-Ordovician phosphorite obolus strata in the north-west of the Russian platform]. Nauka, Leningrad. (In Russian)

Saito, K., Jacob, P., 1995. Gamma ray fields in the air due to sources in the ground. Radiation Protection Dosimetry 58 (1), 29–45.

Tzortzis, M., Tsertos, H., 2004. Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. Journal of Environmental Radioactivity 77, 325–328. https://doi.org/10.1016/j.jenvrad.2004.03.014.

UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. Report to the General Assembly, with scientific annexes. Volume I: Sources, Annex B: Exposures from natural radiation sources. United Nations Publications, New York.

Zander, V. N., Salomon, A. P., 1971. Tectonics, in: Geology of the USSR. Volume 1. Leningrad, Pskov and Novgorod regions / Sidorenko, A. V., Selivanova, V. A., Kofman, V. S. (Eds.), Nedra, Moscow, 361–406. (In Russian)

Downloads

Published

2018-06-01

How to Cite

Лебедев, С. В. (2018) “Environmental assessment of risks associated with the Ordovician Dictyonema shale in the eastern part of the Baltic Klint”, Vestnik of Saint Petersburg University. Earth Sciences, 63(2), pp. 147–159. doi: 10.21638/11701/spbu07.2018.202.

Issue

Section

Articles