Features of the formation of the Central and East Pacific La Niña types

Authors

  • Olesia Marchukova Institute of Natural and Technical Systems, 28, pr. Lenina, Sevastopol, 299011, Russian Federation https://orcid.org/0000-0001-6205-9946
  • Elena Voskresenskaya Institute of Natural and Technical Systems, 28, pr. Lenina, Sevastopol, 299011, Russian Federation https://orcid.org/0000-0003-4889-0180

DOI:

https://doi.org/10.21638/spbu07.2022.205

Abstract

In this paper the dataset of global ocean chlorophyll «a» (Chl a) concentration from the GlobColour project over the equatorial Pacific during the La Niña events from 1998 to 2018 is analyzed. GlobColour includes satellite sensors such as SeaWiFS, MODIS, MERIS and others. The study of changes in chlorophyll «a» concentration is carried out with an analysis of sea temperature and current distributions on the surface and over the ocean depth taken from the NCEP GODAS reanalysis from 1981 to 2018. Additionally the trade wind indices from 1979 to 2018 are used. The purpose of the work is to study the mechanisms of formation of two La Niña types, leading to the occurrence of different climatic anomalies in different regions of our planet. It is found that at the initial stage of the Central Pacific La Niña type origin the ocean chlorophyll «a» concentration over the center equatorial Pacific increases in six to eight times (from 0.1 mg/m3 to 0.8 mg/m3) and the thermocline depth in this area decreases to 50 m indicating the intensification of the central equatorial upwelling. During the East Pacific La Nina type the central equatorial upwelling is not formed and negative sea surface temperature anomalies are formed by increasing of the Peruvian upwelling supported intensification trade winds on the East Pacific equatorial sector. All obtained results are confirmed by a 95% statistically significant by Student's test. Thus, the work is demonstrated significant differences in the features of the two La Niña types formation at their initial stage of origin.

Keywords:

La Niña types, chlorophyll concentration, sea surface temperature anomaly, thermocline, Pacific Ocean, trade winds, surface currents

Downloads

Download data is not yet available.
 

References

Бондаренко, А. Л., Серых, И. В. (2011). О формировании явления Эль-Ниньо — Ла-Нинья Тихого океана. Современные проблемы дистанционного зондирования Земли из Космоса, 8 (2), 57–63.

Марчукова, О. В., Воскресенская, Е. Н., Лубков, А. С. (2018). К вопросу о физическом механизме формирования двух типов Ла-Нинья. Процессы в геосредах, 3 (17), 267–268.

Марчукова, О. В., Лубков, А. С., Воскресенская, Е. Н. (2020). Качество воспроизведения событий Эль-Ниньо и Ла-Нинья по разным массивам реконструированных данных температуры поверхности океана. Вестник СПбГУ. Науки о Земле, 1 (1), 97–120. https://doi.org/10.21638/spbu07.2020.106

An, S.-I. (2008). Interannual variations of the tropical ocean instability wave and ENSO. Journal of Climate, 21 (15), 3680–3686. https://doi.org/10.1175/2008JCLI1701.1

Ashok, K., Behera, S. K., Rao, S. A., Weng, H. and Yamagata T. (2007). El Nino Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007. https://doi.org/10.1029/2006JC003798

Baturin, N. G. and Niiler, P. P. (1997). Effects of instability waves in the mixed layer of the equatorial Pacific. Journal of Geophysical Research, 102 (C13), 27771–27793. https://doi.org/10.1029/97JC02455

Cai, W. and Cowan, T. (2009). La Nina Modoki impacts Australia autumn rainfall variability. Geophys. Res. Lett., 36, L12805. https://doi.org/10.1029/2009GL037885

Chang, C. P., Zhang, Y. S. and Li, T. (2000). Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326–4340. https://doi.org/10.1175/1520-0442(2000)013%3C4326:IAIVOT%3E2.0.CO;2

Chen, S. F., Chen, W. and Wei, K. (2013). Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv. Atmos. Sci., 30, 1712–1724. https://doi.org/10.1007/s00376-013-2296-8

Contreras, R. F. (2002). Long-term observations of tropical instability waves. J. Phys. Oceanogr., 32, 2715–2722. https://doi.org/10.1175/1520-0485(2002)032<2715:LTOOTI>2.0.CO;2Cpc.ncep.noaa.gov (2020).

National weather service — Monthly atmospheric and SST Indices. [online] Available at: https://www.cpc.ncep.noaa.gov/data/indices/ [Accessed 10 Feb. 2020].

Cracknell, A. P., Newcombe, S. K., Black, A. F. and Kirby, N. E. (2001). The ABDMAP (Algal Bloom Detection, Monitoring and Prediction) Concerted Action. Int. Journal of Remote Sensing, 22, 205–247. https://doi.org/10.1080/014311601449916

Diamond, M. S. and Bennartz, R. (2015). Occurrence and trends of eastern and central Pacific El Niño in different reconstructed SST data sets. Geophys. Res. Lett., 42, 375–381. https://doi.org/10.1002/2015GL066469

Ding, S., Chen, W., Feng, J. and Graf, H.-F. (2017). Combined Impacts of PDO and Two Types of La Niña on Climate Anomalies in Europe. Journal of Climate, 30, 3253–3278. https://doi.org/10.1175/JCLI-D-16-0376.1

Feingold, J. S. (2011) El Niño, La Niña, and ENSO. In: D. Hopley, ed., Encyclopedia of Modern Coral Reefs. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. 365–368. https://doi.org/10.1007/978-90-481-2639-2_74

Feng, L. C., Zhang R.-H., Yu B. and Han X. (2020). Roles of wind stress and subsurface cold water in the second-year cooling of the 2017/18 La Niña event. Adv. Atmos. Sci., 37, 847−860. https://doi.org/10.1007/s00376-020-0028-4

Graham, T. (2014). The importance of eddy permitting model resolution for simulation of the heat budget of tropical instability waves. Ocean Modelling, 79, 21–32. https://doi.org/10.1016/j.ocemod.2014.04.005

Hermes.acri.fr (2021). The GlobColour Project. [online] Available at: https://hermes.acri.fr/index.php?-class=archive/ [Accessed 27 Feb. 2020].

Hirahara, S., Ishii, M. and Fukuda, Y. (2014). Centennial-scale sea surface temperature analysis and its uncertainty. Journal of Climate, 27, 57–75. https://doi.org/10.1175/JCLI-D-12-00837.1

Laken, B. and Calogovic, J. (2013). Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. J. Space Weather Space Clim., 3, A29. https://doi.org/10.1051/swsc/2013051

Legeckis, R. (1977). Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 1179–1181. https://www.science.org/doi/10.1126/science.197.4309.1179

Manuel, J. (2008). Drought in the Southeast: Lessons for water management. Environ Health Perspect, 116, A168–A171. https://doi.org/10.1289/ehp.116-a168

Maritorena, S., Hembise Fanton d’Andon, O., Mangin, A. and Siegel, D. A. (2010). Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote Sensing of Environment, 114, 1791–1804. https://doi.org/10.1016/j.rse.2010.04.002

Menkes, C. E. R., Vialard, J. G., Kennan, S. C., Boulanger, J.-P. and Madec, G. V. (2006). A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. Journal of Physical Oceanography, 36 (5), 847–865. https://doi.org/10.1175/JPO2904.1

Miller, J. (2019). La Niña and the Making of Climate Optimism. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-76141-1

Philander, S. G. (1990). El Niño, La Niña and the Southern Oscillation. Academic Press, San Diego, CA. https://doi.org/10.1126/science.248.4957.904

Picaut, J., Hackert, E., Busalacchi, A. J., Murtugudde, R. and Lagerloef, G. (2002). Mechanisms of the 1997–1998 El Niño–La Niña, as inferred from space-based observations. J. Geophys. Res., 107, 3037. https://doi.org/10.1029/2001JC000850

Psl.noaa.gov (2021). NOAA Physical Sciences Laboratory (PSL) — NCEP Global Ocean Data Assimilation System (GODAS). [online] Available at: https://psl.noaa.gov/data/gridded/data.godas.html/ [Accessed 27 Dec. 2021].

Qiao, L. and Weisberg, R. H. (1995). Tropical instability wave kinematics: Observations from the tropical instability wave experiment. J. Geophys. Res., 100, 8677–8693 https://doi.org/10.1029/95JC00305

Rasmusson, E. M. and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384. https://doi.org/10.1175/1520-0493(1982)110%3C0354:VITSST%3E2.0.CO;2

Riascos, J. M., Heilmayer, O. and Laudien, J. (2008). Population dynamics of the tropical bivalve Cardita affinis from Málaga Bay, Colombian Pacific related to La Niña 1999–2000. Helgol. Mar. Res., 62, 63–71. https://doi.org/10.1007/s10152-007-0083-6

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van Den Dool, H. M., Pan, H.-L., Moorthi, S., Behringer, D., Stokes, D., Pena, M., Lord, S., White, G., Ebisuzaki, W., Peng, P. and Xie, P. (2006). The NCEP Climate Forecast System. J. Climate, 19, 3483–3517. https://doi.org/10.1175/JCLI3812.1

Shinoda, T., Hurlburt, H. E. and Metzger, E. J. (2013) Anomalous tropical ocean circulation associated with La Nina Modoki. J. Geophys. Res., 116, C12001. https://doi.org/10.1029/2011JC007304

Tian, F., Zhang, R.‐H. and Wang, X. (2019). A positive feedback onto ENSO due to tropical instability wave (TIW)‐induced chlorophyll effects in the Pacific. Geophys. Res. Lett., 46, 889–897. https://doi.org/10.1029/2018GL081275

Voskresenskaya, E. N. and Marchukova, O. V. (2017). Spatial classification of La Nina events. Izvestiya, Atmospheric and Oceanic Physics, 53, 111–119. https://doi.org/10.1134/S0001433817010133

Webster, P. J., Magaña V. O., Palmer T. N., Shukla, J., Tomas, R. A., Yanai, M. and Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14451–14510. https://doi.org/10.1029/97JC02719

Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P. and Jin F.-F. (2009). El Niño in a changing climate. Nature, 461, 511–514. https://doi.org/10.1038/nature08316

Yu, J.-Y. and Liu, W. T. (2003). A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean. Geophys. Res. Lett., 30, 1735. https://doi.org/10.1029/2003GL017176

Yu, J.-Y. and Kim, S. T. (2013). Identifying the Types of Major El Niño Events since 1870. Int. Journal of Climatology, 33, 2105–2112. https://doi.org/10.1002/joc.3575

Yuan, Y. and Yan, H. M. (2013). Different types of La Nina events and different responses of the tropical atmosphere. Chinese Science Bulletin, 58, 406–415. https://doi.org/10.1007/s11434-012-5423-5

Zhang, R.-H. (2016). A modulating effect of tropical instability wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific. Journal of Geophysical Research: Oceans, 121, 7326–7353. https://doi.org/10.1002/2015JC011567

Zhang, W., Wang, L., Xiang, B., Qi, L. and He, J. (2014). Impacts of two types of La Niña on the NAO during boreal winter. Climate Dynamics, 44, 1351–1366. https://doi.org/10.1007/s00382-014-2155-z

Published

2022-06-30

How to Cite

Marchukova, O. and Voskresenskaya , E. (2022) “Features of the formation of the Central and East Pacific La Niña types ”, Vestnik of Saint Petersburg University. Earth Sciences, 67(2), pp. 299–317. doi: 10.21638/spbu07.2022.205.

Issue

Section

Articles