On the method of surface-wave tomography and perspectives for its application in engineering seismic exploration

Authors

  • Ilya Levin Saint-Petersburg State University, Russia, St.Petersburg, University emb., 7-9, 199034 https://orcid.org/0000-0001-9203-8409
  • Andrei Ponomarenko Saint-Petersburg State University, Russia, St.Petersburg, University emb., 7-9, 199034
  • Vyacheslav Polovkov Saint-Petersburg State University, Russia, St.Petersburg, University emb., 7-9, 199034 https://orcid.org/0000-0001-7214-6015
  • Dmitry Popov Saint-Petersburg State University, Russia, St.Petersburg, University emb., 7-9, 199034
  • Vladimir Troyan Saint-Petersburg State University, Russia, St.Petersburg, University emb., 7-9, 199034

DOI:

https://doi.org/10.21638/spbu07.2022.201

Abstract

The upper part of the seismic section is studied using refracted waves, as well as surface waves using the MASW method during engineering seismic surveys. This work is devoted to consideration of a relatively new near-surface approach, which is actively used in seismology for studying the upper mantle and deep part of the earth's crust, the method of surface wave tomography. This method is of great practical interest, since it allows to obtain 3D subsurface models and conduct remote researches; also it potentially has better spatial resolution than the widely used MASW method. Within the framework of this work, tests of the developed algorithm for surface-wave tomography using direct rays were carried out on modeled data. The performance of the algorithm was assessed and the resolution of the method was estimated. Also the optimal observation schemes were considered as well as the influence of the regularization parameter value on the inversion result. Basing on the results of the current study, it can be concluded that the method of surface-wave tomography and its realization via the developed algorithm can be effectively used to solve engineering-geological problems.

Keywords:

engineering seismic exploration, surface waves, the upper part of the seismic section, near surface, seismic tomography

Downloads

Download data is not yet available.
 

References

Бондарь, В. И. (2003). Основы Сейсморазведки. Екатеринбург: Издательство УГГА.

Буров, В.А., Сергеев, С.Н., Шуруп, А.С., Щербина, А.В. (2015). Томографическое восстановление характеристик дна мелкого моря. Акустический журнал, 61(5), 583-595. https://doi.org/10.7868/S0320791915050068

Левшин, А. Л., Яновская, Т. Б., Ландер, А. Л. (1987). Поверхностные сейсмические волны в горизонтально-неоднородной земле. М.: Наука, 277 с.

Преснов, Д.А., Собисевич, А.Л., Груздев, П.Д., Игнатьев, В.И., Коньков, А.И., Мореев, А.Ю., Тарасов, А.В., Шувалов, А.А., Шуруп, А.С. (2019). Томографическая оценка параметров водоема при наличии ледового покрова с использованием сейсмоакустических излучателей. Акустический журнал, 65(5), 688-698. https://doi.org/10.1134/S0320791919050186

Шишкина, М.А., Фокин, И.В., Тихоцкий, С.А. (2015). К вопросу о разрешающей способности межскважинной лучевой сейсмической томографии. Сейсмические технологии, 1, 5-21. https://doi.org/10.18303/1813-4254-2015-1-5-21

Яновская, Т. Б. (2015). Поверхностно-волновая томография в сейсмологических исследованиях. СПб.: Наука, 167 c.

Alyousuf, T., Rector, J., Newman, G., Petrov, P. (2017). Surface-wave tomography to resolve water table: Almond Orchard case study, Modesto, California. In: SEG Technical Program Expanded Abstracts 2017. SEG, 5407–5411. https://doi.org/10.1190/segam2017-17588536.1

Bohlen, T., Kugler, S., Klein, G., Theilen, F. (2004). 1.5D inversion of lateral variation of Scholte-wave dispersion. Geophysics, 69, 330–344. https://doi.org/10.1190/1.1707052

Boiero, D., Wiarda, E., Vermeer, P. (2013). Surface-and guided-wave inversion for near-surface modeling in land and shallow marine seismic data. The Leading Edge, 32(6), 638–646. https://doi.org/10.1190/tle32060638.1

Cerveny, V. (2005). Seismic ray theory. Cambridge: Cambridge University Press

Ikeda, T., Tsuji, T. (2018). Surface-wave tomography for near-surface characterization with continuous wavelet transform for two-station cross-correlation. In: SEG Technical Program Expanded Abstracts 2018. SEG, 2531–2535. https://doi.org/10.1190/segam2018-2996939.1

Klein, G., Bohlen, T., Theilen, F., Kugler, S., Forbriger, T. (2005). Acquisition and inversion of dispersive seismic waves in shallow marine environments. Marine Geophysical Researches, 26, 287–315. https://doi.org/10.1007/s11001-005-3725-6

Kugler, S., Bohlen, T., Forbriger, T., Bussat, S., Klein, G. (2007). Scholte-wave tomography for shallow-water marine sediments. Geophysical Journal International, 168(2), 551–570. https://doi.org/10.1111/j.1365-246X.2006.03233.x

Long, L. T., Kocaoglu, A. H., Doll, W.E.,Chen, X., Martin, J. (1999). Surface-wave group-velocity tomography for shallow structures at a waste site. In: SEG Technical Program Expanded Abstracts 1999. SEG, 496-499. https://doi.org/10.1190/1.1821062

Long, L. T., Kocaoglu, A. H. (2001). Surface-Wave Group-Velocity Tomography for Shallow Structures. Journal of Environmental & Engineering Geophysics (JEEG), 6(2), 71–81.

Park C., Miller R., Xia J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800-808. https://doi.org/10.1190/1.1444590

Polovkov, V. V., Nikitin, A. S., Popov, D. A., Maev, P. A., Birukov, E. A., & Tokarev, M. Y. (2018). Gas-saturated sediments study in the upper part of the geological medium using ocean bottom nodes. In: Engineering and Mining Geophysics 2018. EAGE, 1-5. https://doi.org/10.3997/2214-4609.201800516

Ponomarenko, A., Polovkov, V., Popov, D., & Kashtan, B. (2019, April). The Advantages of Using Surface Wave Tomography in the Marine Studies of the Upper Part of the Seismic Section. In: Marine Technologies 2019. EAGE, 1-7. https://doi.org/10.3997/2214-4609.201901819

Presnov D.A., Sobisevich A.L., Shurup A.S. (2016). Model of the geoacoustic tomography based on surface-type waves. Physics of Wave Phenomena, 24(3), 249-254. https://doi.org/10.3103/S1541308X16030109

Rector, J. W., Pfeiffe, J., Hodges, S., Kingman, J., Sprott, E. (2015). Tomographic imaging of surface waves: A case study from the Phoenix Mine, Battle Mountain, Nevada. The Leading Edge, 34(11), 1360–1364. https://doi.org/10.1190/tle34111360.1

Roslov, Y. V., Merezhko, A. A., Polovkov, V. V., Popov, D. A., & Zhemchuzhnikov, E. G. (2014). Multicomponent seismic survey in transition zone of Pechora Bay with node system Turtle-500. In: 6th EAGE Saint Petersburg International Conference and Exhibition. EAGE, 1-5. https://doi.org/10.3997/2214-4609.20140213

Ryzhkov, V. I., Sergeev, K. S., Roslov, Y. V., Polovkov, V. V., & Elistratov, A. V. (2015). Engineering surveys by the method of the cableless ocean bottom seismic. In: 11th EAGE International Scientific and Practical Conference and Exhibition on Engineering and Mining Geophysics, EAGE. https://doi.org/10.3997/2214-4609.201412223

Socco, L., Foti, S. and Boiero, D. (2010). Surface-wave analysis for building near-surface velocity models - established approaches and new perspectives. Geophysics, 75(5), 75A83–75A102. https://doi.org/10.1190/1.3479491

Yanovskaya, T. B., Ditmar, P. G. (1990). Smoothness criteria in surface wave tomography. Geophysical Journal International, 102(1), 63–72. https://doi.org/10.1111/j.1365-246X.1990.tb00530.x

Published

2022-06-30

How to Cite

Levin, I. (2022) “On the method of surface-wave tomography and perspectives for its application in engineering seismic exploration”, Vestnik of Saint Petersburg University. Earth Sciences, 67(2), pp. 202–226. doi: 10.21638/spbu07.2022.201.

Issue

Section

Articles