Application of the theory of columnar Q-vortices with helical structure for the Lofoten vortex in the Norwegian Sea

Authors

  • И. Л. Башмачников St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation; NIERSC-Nansen International Environmental and Remote Sensing Centre, 7, office 49Н, 14-ya liniya V. O., St. Petersburg, 199034, Russian Federation
  • Т. В. Белоненко St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • П. А. Куйбин Kutateladze Institute of Thermophysics, SB RAS, 1, pr. Lavrentyeva, Novosibirsk, 630090, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu07.2017.301

Abstract

In this paper, dynamic characteristics of mesoscale vortices in the ocean are considered using the theory of columnar vortices with a helical structure. The radial profile of the relative vorticity is approximated with the Q-distribution. Expressions connecting the distributions of the horizontal and vertical velocity components in this type of vortices are obtained. The limitations for the applicability of the analytical solution are derived. The advantages and disadvantages of this model are shown in comparison with the radial distributions of the corresponding parameters in Scully and in Rayleigh vortices. In particular, it is shown that the Q-distribution can, in some sense, be considered as a compromise solution between the two distributions above. The theory of columnar Q-vortices with helical structure is applied to the permanently existing anticyclonic Lofoten vortex of the Norwegian Sea. The mean radial distributions of various dynamics characteristics of the Lofoten vortex are obtained using simulations with the regional hydrodynamic model MIT. The reasons for formation of the observed vertical velocity structure are analyzed. It is shown that, in contrast to atmospheric synoptic structures, divergence of Ekman fluxes in the bottom layer affects only the lower part of the vortex. In the upper ocean, ascending vertical motion is observed in the Lofoten vortex. It is assumed that horizontal dispersion of vortex energy, the most intense in the surface layer, plays an essential role in the formation of the field of vertical velocities in the upper part of its core. Refs 36. Figs 3.

Keywords:

Norwegian Sea, Lofoten vortex, radial velocity structure, Q-vortex, divergence, MIT hydrodynamics model

Downloads

Download data is not yet available.
 

References

Литература

Алексеев, Г. В., Багрянцев, М. В., Богородский, П. В., Васин, В. Б., Широков, П. Е., 1991. Структура и циркуляция вод на северо-востоке Норвежского моря, в: Проблемы Арктики и Антарктики 65, 14–23.

Алексеенко, С. В., Куйбин, П. А., Окулов, В. Л., 2003. Введение в теорию концентрированных вихрей. Новосибирск, 504.

Белоненко, Т. В., Волков, Д. Л., Ожигин, В. К., Норден, Ю. Е., 2014. Циркуляция вод в Лофотенской котловине Норвежского моря, в: Вестн. С.-Петерб. ун-та 7, 2, 108–121.

Белоненко, Т. В., Башмачников, И. Л., Колдунов, А. В., Куйбин, П. А., 2017. О вертикальной компоненте скорости в Лофотенском вихре Норвежского моря, в: Изв. РАН. Физика атмосферы и океана 53, 6, 728–737.

Боуден, К. Ф., 1988. Физическая океанография прибрежных вод. Пер. с англ. / Ред. И. Ф. Шадрин. Мир, Москва, 324.

Голивец, С. В., Кошляков, М. Н., 2003. Циклонические вихри субантарктического фронта и образование антарктической промежуточной воды, в: Океанология 43, 3, 325–338.

Жмур, В. В., 2011. Мезомасштабные вихри океана. ГЕОС, 384.

Иванов, В. В., Кораблев, А. А., 1995a. Формирование и регенерация внутрипикноклинной линзы в Норвежском море, в: Метеорология и гидрология 9, 102–110.

Иванов, В. В., Кораблев, А. А., 1995b. Динамика внутрипикноклинной линзы в Норвежском море, в: Метеорология и гидрология 10, 55–62.

Куйбин, П. А., Окулов, В. Л., 1996. Одномерные решения для течений с винтовой симметрией, в: Теплофизика и аэромеханика 4, 311–315.

Озмидов, Р. В., 1986. Диффузия примеси в океане. Гидрометеоиздат, Ленинград, 280.

Педлоски, Дж., 1984. Геофизическая гидродинамика. Мир, Москва, 398.

Перескоков, А. И., 1999. О физической природе крупномасштабного антициклонического круговорота в толще вод Норвежского моря, в: ДАН 364, 4, 549–552.

Романцев, В. А., 1991. Крупномасштабная структура и особенности средней циркуляции вод, в: Проблемы Арктики и Антарктики 65, 75–97.

Alekseenko, S. V., Kuibin, P. A., Okulov, V. L., Shtork, S. I., 1999. Helical vortices in swirl flow, in: J. Fluid Mech 382, 195–243.

Bashmachnikov, I., Loureiro, C., Martins, A., 2013. Topographically induced circulation patterns and mixing over Condor seamount, in: Deep-Sea Res. II. 98, 38–51. https://doi.org/10.1016/j.dsr2.2013.09.014" target="_blank">https://doi.org/10.1016/j.dsr2.2013.09.014

Bashmachnikov, I., Neves, F., Calheiros, T., Carton, X., 2015. Properties and pathways of Mediterranean water eddies in the Atlantic, in: Progress in Oceanogr. 137, 149–172.

Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, in: Deep-Sea Res. I, 128, 1–27. https://doi.org/10.1016/j.dsr.2017.08.001" target="_blank">https://doi.org/10.1016/j.dsr.2017.08.001

Batchelor, G. K., 1964. Axial flow in trailing line vortices, in: J. Fluid Mech. 20, 645–658.

Bowden, K. F., 1983. Physical oceanography of coastal waters. Ellis Horwood Limited, Chichester. 1–302.

Carton, X., 2001. Hydrodynamical modelling of oceanic vortices, in: Surv. Geophys. 22, 179–263.

Carton, X., Flierl, G. R., Polvani, L. M., 1989. The generation of tripoles from unstable axisymmetric isolated vortex structures, in: Europhysics Lett. 9 (4), 339–344.

Chelton, D. B., Schlax, M. G., Samelson, R. M., 2011. Global observations of nonlinear mesoscale eddies, in: Progress in Oceanogr. 91, 167–216.

Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., O’Neill, L. W., 2015. Satellite observations of mesoscale eddy-induced Ekman pumping, in: J. of Physical Oceanogr. 45, 1, 104–132.

Gaube, P., Chelton, D. B., Strutton, P. G., Behrenfeld, M. J., 2013. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies, in: J. Geophys. Res. C118. https://doi.org/10.1002/2013JC009027" target="_blank">https://doi.org/10.1002/2013JC009027

Klein, P., Lapeyre, G., 2009. The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence, in: Annual Rev. of Marine Sci. 1, 351–375.

Köhl, A., 2007. Generation and Stability of a Quasi-Permanent Vortex in the Lofoten Basin, in: J. Phys. Oceanogr. 37, 2637–2651.

Maze, J. P., Arhan, M., Mercier, H., 1997. Volume budjet of the eastern boundary layer off the Iberian Peninsula, in: Deep Sea Res. I. 44 (9–10), 1543–1574.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice-ocean simulation with optimized model parameters: approach and assessment, in: J. Geophys. Res. 116, C04025. https://doi.org/10.1029/2010JC006573" target="_blank">https://doi.org/10.1029/2010JC006573

Ocean circulation and climate: observing and modelling the global ocean, 2001. Siedler, G., Church, J., Gould J. (Eds). San Diego, Academic Press, 715.

Raj, R. P., Chafik, L., Nilsen, J. E. Ø, Eldevik, T., Halo, I., 2015. The Lofoten Vortex of the Nordic Seas, in: Deep-Sea Res. 196, 1–14.

Scully, M. P., 1975. Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads, in: Massachusetts Inst. of Technology Publ. ARSL TR 178–1. Cambridge.

Vaillancourt, R. D., Marra, J., Seki, M. P., Parsons, M. L., Bidigare, R. R., 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean, in: Deep-Sea Res. I, 50, 829–847.

Volkov, D. L., Lee, T., Fu L. L., 2008. Eddy-induced meridional heat transport in the ocean, in: Geophysical Res. Lett. 35, 20.

Volkov, D. L., Kubryakov, A. A., Lumpkin R., 2015. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model, in: Deep-Sea Res. I, 105. 142–157. https://doi.org/10.1016/j.dsr.2015.09.001" target="_blank">https://doi.org/10.1016/j.dsr.2015.09.001

White, M., Bashmachnikov, I., Aristegui, J., Martins, A., 2007. Physical Processes and Seamount Productivity, in: Pitcher, T. J., Morato, T., Hart, P. J. B., Clark, M. R., Haggan, N., Santos, R. S. (Eds), Seamounts: Ecology, Conservation and Management, Blackwell, Oxford, 65–84.

Wunsch C., Ferrari R., 2004. Vertical mixing, energy, and the general circulation of the oceans, in: Annual Rev. of Fluid Mech. 36, 281–314.


References

Alekseenko, S. V., Kuibin, P. A., Okulov, V. L., 2003. Vvedenie v teoriiu kontsentrirovannykh vikhrei [Introduction to the theory of concentrated vortices]. Novosibirsk, 504. (in Russian)

Alekseenko, S. V., Kuibin, P. A., Okulov, V. L., Shtork, S. I., 1999. Helical vortices in swirl flow, in: J. Fluid Mech. 382, 195–243. (in Russian)

Alekseev, G. V., Bagriantsev, M. V., Bogorodskii, P. V., Vasin, V. B., Shirokov, P. E., 1991. Struktura i tsirkuliatsiia vod na severo-vostoke Norvezhskogo moria [Structure and circulation of water in the area of anticyclonic eddy in the northeastern Norwegian Sea], in: Problemy Arktiki i Antarktiki [Probl. Arctic and Antarctic] 65, 14–23. (in Russian)

Bashmachnikov, I., Loureiro, C., Martins, A., 2013. Topographically induced circulation patterns and mixing over Condor seamount, in: Deep-Sea Res. II 98, 38–51. https://doi.org/10.1016/j.dsr2.2013.09.014" target="_blank">https://doi.org/10.1016/j.dsr2.2013.09.014

Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., Carton, X., 2017. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, in: Deep-Sea Res. I, 128, 1–27. https://doi.org/10.1016/j.dsr.2017.08.001" target="_blank">https://doi.org/10.1016/j.dsr.2017.08.001

Bashmachnikov, I., Neves, F., Calheiros, T., Carton, X., 2015. Properties and pathways of Mediterranean water eddies in the Atlantic, in: Progress in Oceanogr. 137, 149–172.

Batchelor, G. K., 1964. Axial flow in trailing line vortices, in: J. Fluid Mech. 20, 645–658.

Belonenko, T. V., Bashmachnikov, I. L., Koldunov, A. V., Kuibin, P. A., 2017. O vertikal’noi komponente skorosti v Lofotenskom vikhre Norvezhskogo moria [On the vertical component of velocity in the Lofoten vortex of the Norwegian Sea], in: Izvestiia RAN. Fizika atmosfery i okeana [Proceedings of the Russian Academy of Sciences] 53, 6, 728–737. (in Russian)

Belonenko, T. V., Volkov, D. L., Ozhigin, V. K., Norden, Iu. E., 2014. Tsirkuliatsiia vod v Lofotenskoi kotlovine Norvezhskogo moria [Circulation of waters in the Lofoten Basin of the Norwegian Sea], in: Vestnik SPbSU, 7, 2, 108–121. (in Russian)

Bouden, K. F. 1988. Fizicheskaia okeanografiia pribrezhnykh vod [Physical Oceanography of Coastal Waters]. Moscow, 324. (in Russian)

Bowden, K. F., 1983. Physical oceanography of coastal waters. Ellis Horwood Limited, Chichester, 1–302.

Carton, X., 2001. Hydrodynamical modelling of oceanic vortices, in: Surv. Geophys. 22, 179–263.

Carton, X., Flierl, G. R., Polvani, L. M., 1989. The generation of tripoles from unstable axisymmetric isolated vortex structures, in: Europhysics Lett. 9 (4), 339–344.

Chelton, D. B., Schlax, M. G., Samelson, R. M., 2011. Global observations of nonlinear mesoscale eddies, in: Progress in Oceanogr. 91, 167–216.

Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., O’Neill, L. W., 2015. Satellite observations of mesoscale eddy-induced Ekman pumping, in: J. of Physical Oceanogr. 45, 1, 104–132.

Gaube, P., Chelton, D. B., Strutton, P. G., Behrenfeld, M. J., 2013. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies, in: J. Geophys. Res. C118. https://doi.org/10.1002/2013JC009027" target="_blank">https://doi.org/10.1002/2013JC009027

Golivets, S. V., Koshliakov, M. N., 2003. Tsiklonicheskie vikhri subantarkticheskogo fronta i obrazovanie antarkticheskoi promezhutochnoi vody [Cyclonic vortices of the subantarctic front and formation of Antarctic intermediate water], in: Okeanologiia [Oceanology] 43, 3, 325–338. (in Russian)

Ivanov, V. V., Korablev, A. A., 1995a. Formirovanie i regeneratsiia vnutripiknoklinnoi linzy v Norvezhskom more [Formation and regeneration of the pycnocline lens in the Norwegian Sea], in: Meteorologiia i gidrologiia [Meteorol. and Hydrol.] 9, 102–110. (in Russian)

Ivanov, V. V., Korablev, A. A., 1995b. Dinamika vnutripiknoklinnoi linzy v Norvezhskom more [Dynamics of pycnocline lens in the Norwegian sea]. Meteorologiia i gidrologiia [Meteorol. and Hydrol.] 10, 55–62. (in Russian)

Klein, P., Lapeyre, G., 2009. The Oceanic Vertical Pump Induced by Mesoscale and Submesoscale Turbulence, in: Annual Rev. of Marine Sci. 1, 351–375.

Köhl, A., 2007. Generation and Stability of a Quasi-Permanent Vortex in the Lofoten Basin, in: J. Phys. Oceanogr. 37, 2637–2651.

Kuibin, P. A., Okulov, V. L., 1996. Odnomernye resheniia dlia techenii s vintovoi simmetriei [One-dimensional solutions for flows with helical symmetry], in: Teplofizika i aeromekhanika [Thermophis. and Aeromech.] 4, 311–315. (in Russian)

Maze, J. P., Arhan, M., Mercier, H., 1997. Volume budjet of the eastern boundary layer off the Iberian Peninsula, in: Deep Sea Res. I. 44 (9–10), 1543–1574.

Nguyen, A. T., Menemenlis, D., Kwok, R., 2011. Arctic ice-ocean simulation with optimized model parameters: approach and assessment, in: J. Geophys. Res. 116, C04025. https://doi.org/10.1029/2010JC006573" target="_blank">https://doi.org/10.1029/2010JC006573

Ocean circulation and climate: observing and modelling the global ocean, 2001. Siedler, G., Church, J., Gould J. (Eds). San Diego, Academic Press, 715.

Ozmidov, R. V., 1986. Diffuziia primesi v okeane [Diffusion of an impurity in the ocean]. Gidrometeoizdat, Leningrad, 280. (in Russian)

Pedlosky, J., 1987. Geofizicheskaia gidrodinamika [Geophysical fluid dynamics]. Mir, Moscow, 398. (in Russian)

Pereskokov, A. I., 1999. O fizicheskoi prirode krupnomasshtabnogo antitsiklonicheskogo krugovorota v tolshche vod Norvezhskogo moria [On the physical nature of large-scale counter-cyclical cycle in the water column of the Norwegian Sea], in: DAN [Rep. of Acad. Sci.] 364, 4, 549–552. (in Russian)

Raj, R. P., Chafik, L., Nilsen, J. E. Ø, Eldevik, T., Halo, I., 2015. The Lofoten Vortex of the Nordic Seas, in: Deep-Sea Res. 196, 1–14.

Romantsev, V. A., 1991. Krupnomasshtabnaia struktura i osobennosti srednei tsirkuliatsii vod [Large-scale structure and characteristics of the average circulation of the water], in: Problemy Arktiki i Antarktiki [Probl. Arctic and Antarctic] 65, 75–97. (in Russian)

Scully, M. P., 1975. Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. Massachusetts Inst. of Technology Publ. ARSL TR 178–1. Cambridge.

Vaillancourt, R. D., Marra, J., Seki, M. P., Parsons, M. L., Bidigare, R. R., 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean, in: Deep-Sea Res. I, 50, 829–847.

Volkov, D. L., Kubryakov, A. A., Lumpkin R., 2015. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model, in: Deep-Sea Res. I, 105. 142–157. https://doi.org/10.1016/j.dsr.2015.09.001" target="_blank">https://doi.org/10.1016/j.dsr.2015.09.001

Volkov, D. L., Lee, T., Fu L. L., 2008. Eddy-induced meridional heat transport in the ocean, in: Geophysical Res. Lett. 35, 20.

White, M., Bashmachnikov, I., Aristegui, J., Martins, A., 2007. Physical Processes and Seamount Productivity, Pitcher, T. J., Morato, T., Hart, P. J. B., Clark, M. R., Haggan, N., Santos, R. S. (Eds), Seamounts: Ecology, Conservation and Management. Blackwell, Oxford, 65–84.

Wunsch C., Ferrari R., 2004. Vertical mixing, energy, and the general circulation of the oceans, in: Annual Rev. of Fluid Mech. 36, 281–314.

Zhmur, V. V., 2011. Mezomasshtabnye vikhri okeana [Mesoscale vortices of the ocean]. GEOS. 384. (in Russian)

Published

2017-12-28

How to Cite

Башмачников, И. Л., Белоненко, Т. В. and Куйбин, П. А. (2017) “Application of the theory of columnar Q-vortices with helical structure for the Lofoten vortex in the Norwegian Sea”, Vestnik of Saint Petersburg University. Earth Sciences, 62(3), pp. 221–236. doi: 10.21638/11701/spbu07.2017.301.

Issue

Section

Articles