Fractionation of polycyclic aromatic hydrocarbons at geochemical barriers

Authors

  • Aleksandr P. Khaustov Peoples’ Friendship University of Russia (RUDN University), 6, ul. Miklukho-Maklaya, Moscow, 117198, Russian Federation https://orcid.org/0000-0002-5338-3960
  • Margarita M. Redina Peoples’ Friendship University of Russia (RUDN University), 6, ul. Miklukho-Maklaya, Moscow, 117198, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2021.108

Abstract

The purpose of the study was to identify patterns of fractionation at geochemical barriers (GCB) of associations of marker compounds - polycyclic aromatic hydrocarbons (PAH). Based on thermodynamic parameters, the throughput of GCB in geochemical systems (GCS) in relation to organic substances at the molecular level is analyzed. PAHs are very informative indicators of the properties of GCB (up to singular surfaces). The processes of migration and selective penetration through GCB were examined for 15 PAHs from the list of priority pollutants recommended by the US Environmental Protection Agency (widely used in the world EPA list): Naphthalene (Naph), acenaphthene (Ace), Fluorene (Flourene), Phenanthrene (Phen), Anthracene (An), Fluoranthene (Flu), Pyrene (Py), Benzo(a)Anthracene (BaA), Chrysene (Chr), Benzo(b)Fluoranthene (BbFlu), Benzo(k)fluoranthhene (BkFlu), Benzo(a) pyrene (BaP), benzo(ghi)perylene (Bghi), Dibenzo(a, h) anthracene (DbA), Indeno(1,2-cd) pyrene (Ip). Being geochemical markers, these compounds can accumulate on barriers and selectively penetrate through them, making them especially important objects of study. Despite numerous studies, these mechanisms of mass transfer have not been sufficiently studied. The types of GCB have been identified in terms of their permeability to PAHs. It is shown that the functions of GCB in systems are much more significant and consist not only of the separation of systems from the external environment and the regulation of mass transfer. The above models of migration and accumulation are based on quantitative estimates, which makes the results more reasonable in comparison with the “conceptual” representations of the behavior of substances on GCB in most studies. Most importantly, the influence of the media contact time for establishing a stable state (stability of the migration of compounds) on GCB has been demonstrated.

Keywords:

geochemical barriers, polycyclic aromatic hydrocarbons, living matter, entropy, classification, indication of transport processes, structure, evolution of geochemical systems

Downloads

Download data is not yet available.
 

References

Гленсдорф, П., Пригожин, И. Р. (2003). Термодинамическая теория структуры, устойчивости и флуктуаций. Москва: УРСС.

Смагин, А. В. (2012). Теория и практика конструирования почв. Москва: Изд-во Московского университета.

Хаустов, А. П. (2017). Геохимические барьеры как форма самоорганизации естественных геосиcтем. Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности, 25 (3), 396-414. https://doi.org/10.22363/2313-2310-2017-25-3-396-413

Хаустов, А. П., Редина, М. М., Яковлева, Е. В. (2018). Водопроявления подземных вод как геохимические системообразующие объекты (интерпретация на основе распределения ПАУ). Геоэкология. Инженерная геология. Гидрогеология. Геокриология, (3), 3-17. https://doi.org/10.7868/S0869780318030018

Яхонтова, Л. К., Зверева, В. П. (2000). Основы минералогии гипергенеза. Владивосток: Дальнаука.

Abakumov, E. V., Tomashunas, V. M., Lodygin, E. D., Gabov, D. N., Sokolov, V. T., Krylenkov, V. A. and Kirtsideli, I. Yu. (2015). Polycyclic aromatic hydrocarbons in the soils of islands and coasts of the Russian sector of the Arctic. Soil Science, (12), 1433-1433.

Bak, P., Tang, C. and Wiesenfeld, K. (1987). Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett., 59, 381.

Khaustov, A. and Redina, M. (2014). Transformation of Petroleum Products in the Geological Environment Accompanying Changes in Their Bitumen Status. Water Resources, 41 (7), 854-864.

Khaustov, A. and Redina, M. (2019). Geochemical barriers as structural components of the geochemical systems evolution. E3S Web of Conferences, 98, 01026. https://doi.org/10.1051/e3sconf/20199801026

Khaustov, A., Redina, M. and Yakovleva, E. (2019). Geochemical barriers as a form of self-organization of geochemical systems (case of study Kerch Peninsula, Russia). E3S Web of Conferences, 98, 01027. https://doi.org/10.1051/e3sconf/20199801027

Li, J., Shang, X., Zhao, Z., Tanguay, R. L., Dong, Q. and Huang, C. (2010). Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Aojiang River waterway in Wenzhou, China. Journal of Hazardous Materials, 173 (1-3), 75-81.

Marinayte, I. I., Gorshkov, A. G., Taranenko, E. N., Chipanina, E. V. and Khodzher, T. V. (2013). Distribution of Polycyclic Aromatic Hydrocarbons in Natural Objects over the Territory of Scattering the Emissions from the Irkutsk Aluminum Plant (Shelekhov City, the Irkutsk Region). Chemistry for Sustainable Development, 20, 135-146.

Published

2021-01-28

How to Cite

Khaustov, A. P. and Redina, M. M. (2021) “Fractionation of polycyclic aromatic hydrocarbons at geochemical barriers”, Vestnik of Saint Petersburg University. Earth Sciences, 66(1). doi: 10.21638/spbu07.2021.108.