Soil salinization processes in the impact zone of mineralized water discharge by the case study in the Yaroslavl Volga region, Russia
DOI:
https://doi.org/10.21638/spbu07.2020.404Abstract
Humid conditions do not encourage the formation of salt-affected soils due to leaching salts out of soil profiles. Nevertheless, the occurrence of salt-affected soils in a humid climate is evident as a result of other factors excluding the climate. Soil salinity in these landscapes is caused by anthropogenic salinization. The objective of this study was to identify types of chemical composition and salinity level of soils forming within the impact zone of artesian water discharge. We also determined the degree of contrast to adjacent non-saline soils and salt contamination boundaries. Soil and water samples were collected from three sites located in the Yaroslavl’ region, the Upper Volga. Sampling was done in June 2017. In the Upper Volga region high-mineralized water rises from saline aquifers via abandoned exploration wells drilled in the 1960s. These soils are found under an average annual rainfall of about 500-700 mm in the taiga zone. This type of climate and vegetation cover normally should lead to the formation of Albic Retisols. Saline waters affecting soils are dominantly Na-Cl or Ca-Na-Cl-SO4 brines. Total dissolved solids in the saline waters range from 10000 to 259500 mg·L-1. Salt-affected soils have from low to high salinity (0.1-0.8 %) but salt content does not exceed 1 %. In the study areas, maximum salinity in the investigated soils was fixed near the water table or wasassociated with lithic discontinuity or abrupt textural change. Salt leaching from the upper horizons prevails in the course of the annual cycle and that is what differs these soils from hydromorphic saline soils formed in arid climates. Field electrical surveys of salinity indicated the local zones of salinization. The salinization phenomenon in humid climates is not part of the main pedogenic processes, but an additional process. The upper horizons of salt-affected soils tend to have similar morphological features to zonal and intrazonal soils. The salt-affected soils studied were classified according to WRB as Orthofluvic Fluvisol (Humic, Loamic, Endosalic, Technic), Orthofluvic Gleyic Fluvisol (Humic, Siltic, Endosalic, Raptic), Amphistagnic Albic Retisol (Siltic, Anoaric, Cutanic, Endosalic) and Albic Retisol (Siltic, Anoaric, Cutanic, Endosalic, Raptic).
Keywords:
arthesian wells, Upper Volga, electrical resistivity, tecnogenic halogenesis
Downloads
References
Аринушкина, Е. В. (1970). Руководство по химическому анализу почв. Москва: Изд-во Московского ун-та.
Базилевич, Н. И., Панкова, Е. И. (1972). Опыт классификации почв по содержанию токсичных солей и ионов. Бюллетень Почвенного института им. В. В. Докучаева, 5, 36–40.
Березин, А. Е., Базанов, В. А., Минеева, Т. А., Березина, Л. А. (2008). Влияние высокоминерализованных вод на почвенно-растительный покров в районах нефтедобычи. Вестник Томского государственного университета. Биология, 306, 142–148.
География почв и почвенное районирование центрального экономического района СССР. (1972). Москва: Изд-во Московского ун-та.
Глазовская, М. А. (1997). Методологические основы оценки эколого-геохимической устойчивости почв к техногенным воздействиям. Москва: Изд-во Московского ун-та.
Департамент охраны окружающей среды и природопользования Ярославской области. (2015). Экологический атлас Ярославской области. Ярославль.
Засоленные почвы России. (2006). Москва: ИКЦ «Академкнига».
Классификация и диагностика почв России. (2004). Смоленск: Ойкумена.
Лаговский, Е. (1861). Описание Больших Солей (посада Костромской губернии). Кострома: Типография П. Андроникова.
Лихарев, Б. К. (1924). Северные губернии Европейской России. Естественные производительные силы России. Полезные ископаемые. Каменная соль и соляные озера, 4 (35), 41−64.
Парамонова, А. Е., Убугунова, В. И., Черноусенко, Г. И., Убугунов, В. Л., Балданов, Б. Ц., Цыремпилов, Э. Г. (2017). Засоленные почвы поймы среднего течения реки Иркут: морфогенетические и агрохимические свойства. Вестник Бурятской государственной сельскохозяйственной академии им. В. Р. Филиппова, 2 (47), 30–38.
Позднякова, А. Д., Поздняков, Л. А., Анциферова, О. Н. (2018). Универсальный прибор для измерений электрических свойств почв. Бюллетень науки и практики, 4 (4), 232–245. http://doi.org/10.5281/zenodo.1218483
Ронжина, Т. В., Кречетов, П. П. (2013). Изменение кислотно-основного состояния почв в результате реализации механизмов геохимической буферности при импактном воздействии минерализованных вод на дерново-подзолистые почвы. Фундаментальные исследования, 6 (10), 1293–1296.
Солнцева, Н. П. (1998). Добыча нефти и геохимия природных ландшафтов. Москва: Изд-во Московского ун-та.
Теории и методы физики почв. (2007). Москва: Гриф и К.
Якимов, А. С., Сванидзе, И. Г., Казанцева, М. Н., Соромотин, А. В. (2014). Изменение свойств почв речных долин южной тайги Западной Сибири под действием минерализованных артезианских вод. Почвоведение, 3, 364–374. https://doi.org/10.7868/S0032180X14030137
Auchmoody, L. R. (1989). Revegetation of a brine-killed forest site. Soil Science Society of America Journal, 52, 277–280.
Boettinger, J. L. and Richardson, J. L. (2001). Saline and wet soils of wetlands in dry climates. In: J. L. Richardson, M. J. Vepraskas, ed., Wetland soils: genesis, hydrology, landscapes, and classification, 2nd ed. Boca Raton, FL: CRC Press, 383–390. https://doi.org/10.1201/9781420026238
Charzyński, P., Bednarek, R., Greinert, A., Hulisz, P. and Uzarowicz, Ł. (2013). Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Science Annual, 64 (4), 145–150. https://doi.org/10.2478/ssa-2013-0023
Chernousenko, G. I. and Yamnova, I. A. (2004). About the genesis of soil salinity in the western part of the Transbaikal region. Eurasian Soil Science, 37 (4), 341–355.
Chernousenko, G. I., Yamnova, I. A. and Skripnikova, M. I. (2003). Anthropogenic salinization of soils in Moscow. Eurasian Soil Science, 36 (1), 92–100.
Evangelou, V. P. and Marsi, M. (2003). Influence of ionic strength on sodium-calcium exchange of two temperate climate soils. Plant and Soil, 250 (2), 307–313. https://doi.org/10.1023/A:1022871204018
Evangelou, V. P. and Mcdonald, L. M. (1999). Influence of Sodium on Soils of Humid Regions. In: M. Pessarakli, ed., Handbook of Plant and Crop Stress, 2nd ed. New York and Basel: Marcel Dekker Inc., 17–50.
Gibson, J. J., Fennell, J., Birks, S. J., Yi, Y., Moncur, M. C., Hansen, B. and Jasechko, S. (2013). Evidence of discharging saline formation water to the Athabasca River in the oil sands mining region, northern Alberta. Canadian Journal of Earth Sciences, 50 (12), 1244–1257. https://doi.org/10.1139/cjes-2013-0027
Handbook for saline soil management. (2018). Rome and Moscow: FAO, Moscow State University.
Hulisz, P. (2008). Quantitative and qualitative differentiation of soil salinity in Poland. Berichte der DBG, 1, 1–4.
Hulisz, P. (2016). Coastal marsh soils in Poland: characteristics and problems of classification. Soil Science Annual, 67 (1), 37–44. https://doi.org/10.1515/ssa-2016-0006
Hulisz, P., Charzyński, P. and Giani, L. (2010). Application of the WRB classification to salt-affected soils in Poland and Germany. Polish Journal of Soil Science, 43 (1), 81–92.
Hulisz, P., Sowiński, P. and Felińczak-Drabik, A. (2013). Soils contaminated by brine spills in Sędowo. In: P. Charzyński, P. Hulisz, R. Bednarek, ed., Technogenic soils of Poland. Torun: Polish Society of Soil Science, 157–170.
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No 106. Rome: FAO.
Keiffer, C. H. and Ungar, I. A. (2001). The effect of competition and edaphic conditions on the establishment of halophytes on brine effected soils. Wetlands Ecology and Management, 9, 469–481. https://doi.org/10.1023/A:1012280611727
Lavado, R. S. and Taboada, M. A. (1988). Water, salt and sodium dynamics in a Natraquoll in Argentina. Catena, 15 (6), 577–594. https://doi.org/10.1016/0341-8162(88)90008-2
Lebedeva, I. I., Ovechkin, S. V., Korolyuk, T. V. and Gerasimova, M. I. (2012). Soil-genetic zoning: Principles, goals, structure, and applications. Eurasian Soil Science, 45 (7), 639–650. https://doi.org/10.1134/S1064229312050079
Lopatovskaya, O. G. (2009). Soils in the zone affected by mineral water springs at the foothills of the Eastern Sayan Ridge. Eurasian Soil Science, 42 (8), 844–849. https://doi.org/10.1134/S106422930908002X
Marsi, M. and Evangelou, V. P. (1991). Chemical and physical behavior of two kentucky soils: I. Sodium-calcium exchange. Journal of Environmental Science and Health Part A, 26 (7), 1147–1176. https://doi.org/10.1080/10934529109375691
McCarter, W. J. (1984). The electrical resistivity characteristics of compacted clays. Geotechnique, 34 (2), 263–267.
Moskovchenko, D. V., Babushkin, A. G. and Ubaidulaev, A. A. (2017). Salt pollution of surface water in oil fields of Khanty-Mansi Autonomous Area-Yugra. Water Resources, 44 (1), 128–138. https://doi.org/10.1134/S0097807817010109
Munn, D. A. and Stewart, R. (1989). Effect of oil well brine on germination and seedling growth of several crops. Ohio J. Science, 89, 92–94.
Murphy, E. C., Kehew, A., Groenewold, G. and Beal, W. (1988). Leachate generated by an oil-and-gas brine pond site in North Dakota. Groundwater, 26 (1), 31–38. https://doi.org/10.1111/j.1745-6584.1988.tb00365.x
Pessarakli, M. (1991). Formation of saline and sodic soils and their reclamation. Journal of Environmental Science and Health Part A, 26 (7), 1303–1320. https://doi.org/10.1080/10934529109375698
Pozdnyakov, A. I. (2008). Electrical parameters of soils and pedogenesis. Eurasian Soil Science, 41 (10), 1050−1058. https://doi.org/10.1134/S1064229308100062
Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57 (5), 1017–1023. https://doi.org/10.1093/jxb/erj108
Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005). Electrical resistivity survey in soil science: a review. Soil and Tillage research, 83 (2), 173–193. https://doi.org/10.1016/j.still.2004.10.004
Scudiero, E., Skaggs, T. H. and Corwin, D. L. (2017). Simplifying field-scale assessment of spatiotemporal changes of soil salinity. Science of the Total Environment, 587−588, 273–281. https://doi.org/10.1016/j.scitotenv.2017.02.136
Solntseva, N. P. and Sadov, A. P. (1997). The effect of saline waste water on soils near the Urengoi oil and condenesed gas deposit (Western Siberia). Eurasian Soil Science, 30 (3), 277–283.
Solntseva, N. P. and Sadov, A. P. (2000). Technogenic halogenesis in the soils of forest-tundra and northern taiga ecosystems in Western Siberia. Eurasian Soil Science, 33 (9), 987–1000.
U. S. Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. USDA Handbook No 60. Washington, DC.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.