Seasonal distribution patterns of precipitation on the territory of West Sayan ridge and taking them into account during the runoff modeling

Authors

  • Галина Валентиновна Пряхина St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Елена Сергеевна Зелепукина St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Татьяна Николаевна Осипова St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Светлана Андреевна Гаврилкина St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Виталий Александрович Соловьёв St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Татьяна Александровна Виноградова St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2019.306

Abstract

Specific height dependences of the precipitation based on the daily meteodata analysis (for the period 1970-85) were obtained for the Western Sayan, that is under conditions of insufficient data provided by the scarce network of stations. The analysis revealed that annual precipitation sum is characterized by closer dependence rather than seasonal one. It has been generally observed that the linear correlation has the highest reliability for southern macroslope of the ridge. At the same time the dependence of northern slope is primarily determined by the height: distribution of precipitation is defined by logarithmic function. Thus, low mountains pluviometric gradient (below 500 m) of warm period reaches a value 100 mm/100 m. As for the mid- mountain parts (above 1300 m), gradients of warm and cold periods don’t exceed 2 mm/100 m. Reliability of identified dependences has been confirmed by model calculations. All the modelled objects and periods were selected considering the existence and availability of both hydrological and meteorological data – the river Us and Amyl basins (right tributaries of Yenisei, Krasnoyarsk district, Russia) which represent typical runoff conditions for the semi-arid and semi-humid areas of the West Sayan. The investigation also found that the application of seasonal pluviometric gradients during the runoff modeling has improved the convergence of calculated and obtained hydrographs. It was shown that taking into account vertical pluviometric gradients turned out to be more significant for semi-arid regions. And furthermore, it’s improved the quality of runoff modeling notably for periods, characterized by the least value of Nash-Sutcliffe criteria, and reduced an amount of years with improper quality of calculation. This is especially important under conditions of insufficient hydrometeorological data.

Keywords:

spatial interpolation of the values of meteorological elements, pluviometric gradients, runoff modeling

Downloads

Download data is not yet available.
 

References

Литература

Авдеева, Ю.В., Бураков, Д.А., 2003. Особенности формирования водного режима р. Оленьей речки и их учет при разработке математической модели стока, в: Проблемы геологии и географии Сибири. Материалы научной конференции, посвященной 125-летию основания Томского государственного университета и 70-летию образования геолого-географического факультета. Изд-во Томского ун-та, Томск, 120–122.

Балабанова, О.А., Заборцева, Л.И., 1984. Рекомендации по прогнозированию паводочного стока на неизученных и слабо изученных реках Восточной Сибири. Сиб. НИИ гидротехники и мелиорации, Красноярск.

Бураков, Д.А., Гордеев, И.Н., 2013. Оценка предвесенних снегозапасов в бассейнах Красноярского и Саяно-Шушенского водохранилищ. География и природные ресурсы 1, 72–78.

Виноградов, Ю.Б., Виноградова, Т.А., 2010. Математическое моделирование в гидрологии. Академия, Москва.

Галахов, В.П., Нарожный, Ю.К., Никитин, С.А., Окишев, П.А., Севастьянов, В.В., Севастьянова, Л.М., Шантыкова, Л.Н., Шуров, В.И., 1987. Ледники Актру (Алтай). Гидрометеоиздат. Ленинград.

Геткер, М.И., Жданов, A.A., 1992. Закономерности распределения высоты и плотности снежного покрова в горно-таежных районах Саян. Труды САНИГМИ 146 (227), 56–63.

Гордеев, И.Н., 2012. Расчет весенних осадков в горной части бассейна р. Енисей. Вестник Красноярского гос. аграрного ун-та 3 (66), 106–109.

Каган, Р.Л., 1979. Осреднение метеорологических полей. Гидрометеоиздат, Ленинград.

Пряхина, Г.В., Зелепукина, Е.С., Журавлев, С.А., Осипова, Т.Н., Амбурцева, Н.И., Виноградова, Т.А., 2017. Оценка стока с малых горных водосборов методами гидрологического моделирования. Вестник Московского ун-та. Серия 1: География 5, 29–37.

Ревякин, В.С., 1981. Природные льды Алтае-Саянской горной области (внутриконтинентальный вариант гляциосферы Земли). Гидрометеоиздат, Ленинград.

Чередько, Н.Н., Журавлев, Г.Г., 2015. Крупномасштабные режимы изменения климата и согласованность изменений пространственно-временной структуры поля атмосферных осадков в алтайском регионе. Вестник Томского гос. ун-та 391, 220–226.

Gavrilkina, S., Zelepukina, E., 2017. Dynamics of mountain forest ecosystems in the continental sector of Siberia: patterns and reasons. In: 17th International multidisciplinary scientific geoconference SGEM 2017. Conference proceedings 17 — Water resources. Forest, marine and ocean ecosystems, 797–804.

Marchand, J.P., 1986. Les gradients pluviometriquesmoyens annuels, dans lesmontagnes du Kerry. Revue de géographie alpine 74 (1–2), 43–53.

Martínez del Castillo, E., Serrano-Notivoli, R., Novak, K., Longares Aladrén, L.A., Arrechea, E., Arrillaga, L., Saz Sánchez, M.A., 2012. Cuantificación de los gradientes climáticos altitudinales en la vertiente norte del macizo del Moncayo a partir de una nueva red de estaciones automáticas en altura. Cambio climático. Extremos e impactos. Publicaciones de la Asociación Española de Climatología (AEC). Salamanca Serie A 8, 519–528.

Sanchez Martin, J.M., 1995. Propuesta Metodologica para la obtenciongradientes termohidricos anuales. Lurralde: inv. espac. 18, 137–154.

Shamseldin, A.Y., O’Connor, K.M., 2001. A Non-Linear Neural Network Techniquefor Updating of River Flow Forecasts. Hydrology and Earth System Sciences 5 (4), 577–597.

Smadja, J., 1991. Particularités climatiques d’un grand versant de mousson himalayen. Revue de géographie alpine 2, 99–119.

Vinogradov, Yu. B., Semenova, O.M., Vinogradova, T.A., 2011. An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrological processes 25 (7), 1055–1073.

Zelepukina, E., Pryakhina, G., Shastina, G., Amburtceva, N., Gavrilkina, S., 2017. Estimation of small mountain drainage basin runoff based on runoff formation model (West Sayan case study). In: 17th International multidisciplinary scientific geoconference SGEM 2017. Conference proceedings 17 — Water resources, forest, marine and ocean ecosystems, 245–252.


References

Avdeeva, Y.V., Burakov, D.A., 2003. Factors in the creation of a Deer river water regime and taking it into account during the mathematical runoff modeling. In: Materialy nauchnoi konferentsii Tomskogo gosudarstvennogo universiteta, Publishing house of Tomsk University, Tomsk, 120–122. (In Russian)

Balabanova, O.A., Zabortseva, L.I., 1984. The recommendations on forecasting of high water runoff at poorly researched rivers of East Siberia. Sib. NII gidrotekhniki i melioratsii, Krasnoiarsk. (In Russian)

Burakov, D.A., Gordeev, I.N., 2013. An assessment of a spring snowstock in Krasnojarsk and Sayan-Shushensk reservoir basins. Geografiia i prirodnye resursy 1, 72–78. (In Russian)

Cheredko, N.N., Zhuravlev, G.G., 2015. Large-scale modes of climate change and the consistency of changes in the spatio-temporal structure of the field of atmospheric precipitation in the Altai region. Vestnik Tomskogo gosudarstvennogo universiteta 391, 220–226. (In Russian)

Galakhov, V.P., Narozhnyi, Iu. K., Nikitin, S.A., Okishev, P.A., Sevast’ianov, V.V., Sevast’ianova, L.M., Shantykova, L.N., Shurov, V.I., 1987. The Glaciers of Aktru. Gidrometeoizdat, Leningrad. (In Russian)

Gavrilkina, S., Zelepukina, E., 2017. Dynamics of mountain forest ecosystems in the continental sector of Siberia: patterns and reasons. In: 17th International multidisciplinary scientific geoconference SGEM 2017. Conference proceedings 17 — Water resources. Forest, marine and ocean ecosystems 32, 797–804.

Getker, M. I., Zhdanov, A. A., 1992. Distribution patterns of snow capacity and density in Sayan taiga belts. Trudy SANIGMI 146 (227), 56–63. (In Russian)

Gordeev, I. N., 2012. Spring rainfall calculation in the Yenisei river basin mountainous part. Vestnik Krasnoiarskogo gosudarstvennogo agrarnogo universiteta 3 (66). 106–109. (In Russian)

Kagan, R. L., 1979. An averaging of meteorological fields. Gidrometeoizdat, Leningrad. (In Russian)

Manuel Sanchez Martin, J., 1995. Propuesta Metodologica para la obtenciongradientes termohidricos anuales. Lurralde: inv. espac. 18, 137–154.

Marchand, J. P., 1986. Les gradients pluviometriquesmoyens annuels, dans lesmontagnes du Kerry. Revue de géographie alpine 74 (1–2), 43–53.

Martínez del Castillo, E., Serrano-Notivoli, R., Novak, K., Longares Aladrén, L. A., Arrechea, E., Arrillaga, L., Saz Sánchez, M. A., 2012. Cuantificación de los gradientes climáticos altitudinales en la vertiente norte del macizo del Moncayo a partir de una nueva red de estaciones automáticas en altura. Cambio climático. Extremos e impactos. Publicaciones de la Asociación Española de Climatología (AEC). Salamanca Serie A 8, 519–528.

Pryakhina, G. V., Zelepukina, E. S., Zhuravlev, S. A., Osipova, T. N., Amburtceva, N. I., Vinogradova, T. A., 2017. Estimation of runoff from the small mountain drainage basins using methods of hydrological modeling. Vestnik Moskovskogo universiteta. Seriia 1: Geography 5, 29–37. (In Russian)

Revyakin, V. S., 1981. The glaciation of Altay-Sayan mountain region. Gidrometeoizdat, Leningrad. (In Russian)

Shamseldin, A. Y., O’Connor, K. M., 2001. A Non-Linear Neural Network Techniquefor Updating of River Flow Forecasts. Hydrology and Earth System Sciences 5 (4), 577–597.

Smadja, J., 1991. Particularités climatiques d’un grand versant de mousson himalayen. Revue de géographie alpine 2, 99–119.

Vinogradov, Yu. B., Semenova, O. M., Vinogradova, T. A., 2011. An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrological processes 25 (7), 1055–1073.

Vinogradov, Yu. B., Vinogradova, T. A., 2010. Mathematic modeling in hydrology. Akademiia Publ., Moscow. (In Russian)

Zelepukina, E., Pryakhina, G., Shastina, G., Amburtceva, N., Gavrilkina, S., 2017. Estimation of small mountain drainage basin runoff based on runoff formation model (West Sayan case study). In: 17th International multidisciplinary scientific geoconference SGEM 2017. Conference proceedings 17 — Water resources, forest, marine and ocean ecosystems 31, 245–252.

Published

2019-07-23

How to Cite

Пряхина, Г. В. (2019) “Seasonal distribution patterns of precipitation on the territory of West Sayan ridge and taking them into account during the runoff modeling”, Vestnik of Saint Petersburg University. Earth Sciences, 64(3). doi: 10.21638/spbu07.2019.306.

Issue

Section

Articles

Most read articles by the same author(s)