Diagnosis and character of hydromorphic salinization of the “Varnicy” landscape (Rostov Veliky, Yaroslavskaya oblast’): experience and methodology of geo-electric methods application

Authors

  • Юлия Владимировна Симонова St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Алексей Валентинович Русаков St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1351-9050
  • Александр Георгиевич Рюмин St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-5394-4361
  • Владимир Ростиславович Беляев Moscow State University, 1, Leninskie gory, Moscow, 119991, Russian Federation https://orcid.org/0000-0002-4326-9072

DOI:

https://doi.org/10.21638/spbu07.2019.105

Abstract

The main objective of this study is to find out the application of electrical resistivity measured in water saturated soil (ER) as a proxy to soil salinity assessment within a humid climate landscape located in the center of the Russian plain. The issue is not the only salinization, but some other processes controlling the soil formation can influence the ER significantly. These processes attributed to the phreatic water salinization are waterlogging, soil organic carbon accumulation, carbonate and gypsum sedimentation. For evaluation of landscape salinity of the nature reserve “Solyanoj istochnik Varnicy”, where saline spring discharging, soil and water samples were collecting five times during an annual monitoring study (2016-2017). The samples from the two soil pits and water samples from the spring, groundwater and surface water draining the local catchment were analyzed in terms of the relationship between the ER values and major ions concentrations. Correlation analysis revealed a close relationship between the values of ER and TDS, calcium and sulfate content in the soil water extract. At the same time, parametric statistical analysis found that seasonal fluctuations of ER were due to short-term fluctuations in sodium and chloride concentrations. The ER values measured in the drainage and groundwater of the study site were more sensitive as compared with the soil to changes in the salinity level during the annual hydrological cycle. A high correlation coefficient was observed between the ER and both the total salt content and the major ions concentrations in water samples. Geospatial salinity variation and salinization area were detected by horizontal electric profiling (HEP) within the site previously covered with detailed geodetic surveys. With an example of the hydromorphic Varnicky section in the humid climate it was shown that high soil salinity plays a main role in the resistivity value formation compared with other factors. The electrophysical parameters can be reliable indicators in monitoring studies of landscape salinity.

Keywords:

Varnicy, Nero lake, soil salinity mapping, specific electric resistivity, horizontal electric profiling, soil, salinity, humid climate

Downloads

Download data is not yet available.
 

References

Литература

Вашукевич Н. В., Гюлалыев Ч. Г., Куклина С. Л., 2017. Диагностика почв зоны экологического мониторинга озера Байкал с использованием электрофизического метода. Аграрный вестник Урала 156, 14–19.

Кондрашкин, Б. Е., Поздняков, А. И., Самсонова, В. П., Кондрашкина, М. И., 2011. Оценка зависимости удельного электрического сопротивления от базисных свойств агросерых почв Брянского ополья. Вестник Моск. ун-та. Серия 17: Почвоведение (2), 36–39.

Кошелев, А. А., Щербаков, С. И., Елизаров, Ю. Е., 2012. Картографирование почв полей методом электрического зондирования. Нива Поволжья 4, 51–57.

Манштейн, А. К., 2002. Малоглубинная геофизика. Изд-во Новосибирск. ун-та Новосибирск.

Новский, В. А., 1975. Плейстоцен Ярославского Поволжья. Наука, Москва.

Поздняков, А. И., 2009. Электрофизические методы исследования почв, методическое пособие. Москва.

Поздняков, А. И., Елисеев, П. И., Русаков, А. В., 2012. Электрическое сопротивление как возможный показатель окультуренности пахотных супесчаных почв гумидной зоны. Вестник Моск. ун-та. Серия 17. Почвоведение 2, 54–60.

Рохмистров, В. Л., 1968. Подземные воды Ярославского района. Краеведение. Ученые записки ЯГПИ 71, 73-92.

Субботина, М. Г., Хорхе, Б. С., 2013. Об электропроводности почв в современных исследованиях. Пермский аграрный вестник 3(3), 28–33.

Gunn, D. A., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Dijkstra, T. A., Haslam, E., Kirkham, M., Wragg, J., Holyoake, S., Hughes, P. N., Hen-Jones, R., Glendinning S., 2015. Moisture monitoring in clay embankments using electrical resistivity tomography. Construction and Building Materials 92, 82–94. https://doi.org/10.1016/j.conbuildmat.2014.06.007

McCarter, W. J., 1984. The electrical resistivity characteristics of compacted clays. Geotechnique 34(2), 263–267.

Pozdnyakov, A. I., 2008a. Electrical parameters of soils and pedogenesis. Eurasian Soil Science 41(10),1050-1058. URL: https://doi.org/10.1134/S1064229308100062

Pozdnyakov, L. A., 2008b. Estimation of the biological activity of peat soils from the specific electrical resistance. Eurasian Soil Science 41(10), 1077–1082. URL: https://doi.org/10.1134/S1064229308100098

Pozdnyakov, A. I., Pozdnyakova, L. A., Karpachevskii, L. O., 2006. Relationship between water tension and electrical resistivity in soils. Eurasian Soil Science 39(1), 78–83. URL: https://doi.org/10.1134/S1064229306130138

Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G., 2005. Electrical resistivity survey in soil science: a review. Soil and Tillage research 83(2), 173–193. URL: https://doi.org/10.1016/j.still.2004.10.004

Smernikov, S. A., Pozdnyakov, A. I., Shein, E. V., 2008. Assessment of soil flooding in cities by electrophysical methods. Eurasian Soil Science 41(10), 1059–1065. URL: https://doi.org/10.1134/S1064229308100074

Soil salinity assessment: Methods and interpretation of electrical conductivity measurements, 1999. FAO Irrigation and Drainage Paper 57. FAO, Rome. URL: http://www.fao.org/docrep/019/x2002e/x2002e.pdf (дата обращения: 25.01.2019).

Soil Survey Field and Laboratory Methods Manual, 2014. Soil Survey Investigations Report 51(2). URL: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1244466.pdf (дата обращения: 25.01.2019).

Status of the World’s Soil Resources (SWSR). Main Report, 2015. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome.

Yeh, T. C. J., Liu, S., Glass, R. J., Baker, K., Brainard, J. R., Alumbaugh, D., LaBrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology, Water Resources Research 38(12), 14–1–14-13. URL: https://doi.org/10.1029/2001WR001204


References

Gunn, D. A., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Dijkstra, T. A., Haslam, E.,Kirkham, M., Wragg, J., Holyoake, S., Hughes, P. N., Hen-Jones, R., Glendinning S., 2015. Moisture monitoring in clay embankments using electrical resistivity tomography. Construction and Building Materials 92, 82–94. https://doi.org/10.1016/j.conbuildmat.2014.06.007.

Kondrashkin, B. E., Pozdnyakov, A. I., Samsonova, V. P., Kondrashkina, M. I., 2011. Otsenka zavisimosti udel’nogo elektricheskogo soprotivleniia ot bazisnykh svoistv agroserykh pochv Brianskogo opol’ia [Electrical resistivity of arable grey forest soils at Bryansk Opol’e region]. Vestnik Mosk. un-ta. Seriia 17. Pochvovedenie [Vestnik of Moscow University. Series 17. Soil Science] (2), 36–39. (In Russian)

Koshelev, A. A., Shcherbakov, S. I., Elizarov, Yu. E., 2012. Kartografirovanie pochv polei metodom elektricheskogo zondirovaniia [Mapping of soil fields by the method of electrical sounding]. Niva Povolzh’ia 4, 51–57. (In Russian)

Manshtejn, A. K., 2002. Maloglubinnaia geofizika [Shallow geophysics]. Izd. Novosibirsk. un-ta, Novosibirsk. (In Russian)

McCarter, W. J., 1984. The electrical resistivity characteristics of compacted clays. Geotechnique 34(2), 263–267.

Novskij, V. A., 1975. Pleistotsen Iaroslavskogo Povolzh’ia [Pleistocene in the Upper Volga region]. Nauka, Moscow. (In Russian)

Pozdnyakov, A. I., 2008a. Electrical parameters of soils and pedogenesis. Eurasian Soil Science 41(10), 1050?1058. URL: https://doi.org/10.1134/S1064229308100062

Pozdnyakov A. I., 2009. Elektrofizicheskie metody issledovaniia pochv [Electrophysical methods of soil investigation]. Izd-vo Mosk. un-ta, Moscow. (In Russian)

Pozdnyakov, A. I., Eliseev, P. I., Rusakov, A. V., 2012. Elektricheskoe soprotivlenie kak vozmozhnyi pokazatel’ okul’turennosti pakhotnykh supeschanykh pochv gumidnoi zony [Electrical resistivity as a possible index of cultivation of arable sandy loamy soils of the humid zone]. Vestnik Mosk. un-ta (Seriia Pochvovedenie) [Vestnik of Moscow University (Series Soil Science)] 2, 54–60. (In Russian)

Pozdnyakov, A. I., Pozdnyakova, L. A., Karpachevskii, L. O., 2006. Relationship between water tension and electrical resistivity in soils. Eurasian Soil Science 39(1), 78–83. URL: https://doi.org/10.1134/S1064229306130138

Pozdnyakov, L. A., 2008b. Estimation of the biological activity of peat soils from the specific electrical resistance. Eurasian Soil Science 41(10), 1077–1082. https://doi.org/10.1134/S1064229308100098

Rohmistrov, V. L., 1968. Podzemnye vody Iaroslavskogo raiona. [Subsurface waters of the Yaroslavl region].Kraevedenie. Uchenye zapiski IaGPI [Scientific notes of YAGPI] 71, 73?92. (In Russian)

Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., Richard, G., 2005. Electrical resistivity survey in soil science: a review. Soil and Tillage research 83(2), 173–193. URL: https://doi.org/10.1016/j.still.2004.10.004

Smernikov, S. A., Pozdnyakov, A. I., Shein, E. V., 2008. Assessment of soil flooding in cities by electrophysical methods. Eurasian Soil Science 41(10), 1059–1065. URL: https://doi.org/10.1134/S1064229308100074

Soil salinity assessment: Methods and interpretation of electrical conductivity measurements, 1999. FAO Irrigation and Drainage Paper 57. FAO, Rome. URL: http://www.fao.org/docrep/019/x2002e/x2002e.pdf (date accessed: 25.01.2019).

Soil Survey Field and Laboratory Methods Manual, 2014. Soil Survey Investigations Report 51(2). URL: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1244466.pdf (date accessed: 25.01.2019).

Status of the World’s Soil Resources (SWSR). Main Report, 2015. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome.

Subbotina, M. G., Horhe, B. S., 2013. Ob elektroprovodnosti pochv v sovremennykh issledovaniiakh. [Soil electroconductivity in current research]. Permskii agrarnyi vestnik [Perm Agrarian Journal] 3(3), 28–33. (In Russian)

Vashukevich N. V., Gyulalyev Ch. G., Kuklina S. L., 2017. Diagnostika pochv zony ekologicheskogo monitoringa ozera Baikal s ispol’zovaniem elektrofizicheskogo metoda. [Electrophysical method in the soils diagnosis of the Lake Baikal environmental monitoring zone]. Agrarnyi vestnik Urala [Ural Agrarian Journal] 156, 14–19. (In Russian)

Yeh, T. C. J., Liu, S., Glass, R. J., Baker, K., Brainard, J. R., Alumbaugh, D., LaBrecque, D., 2002. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology, Water Resources Research 38(12), 14-1–14-13. URL: https://doi.org/10.1029/2001WR001204

Published

2019-05-19

How to Cite

Симонова, Ю. В. (2019) “Diagnosis and character of hydromorphic salinization of the ‘Varnicy’ landscape (Rostov Veliky, Yaroslavskaya oblast’): experience and methodology of geo-electric methods application”, Vestnik of Saint Petersburg University. Earth Sciences, 64(1), pp. 81–99. doi: 10.21638/spbu07.2019.105.

Issue

Section

Articles