Geometallurgical models creation principles

Authors

  • Павел Михайлович Мишулович JSC “Polymetal Management”, Narodnogo opolchenia 2, St. Petersburg, Russia, 198216
  • Сергей Викторович Петров St Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2019.205

Abstract

The following article explores the aspects of geometallurgy models creation and its position in the general chain of geological and technological mapping. The following article describes models creation process and principles applied in the framework of different approaches to geometallurgy models creation. Currently, this type of modeling is considered as the most important and reliable tool for forecasting the technological and economic performance of mining companies. The most progressive is the approach based on the use of quantitative mineralogical analysis for geological and technological modeling, which is very labor-intensive and requires modern and expensive equipment. Approach is being developed in the Russian Federation, which is based on the transformation of a geological database into technological one. The article discusses the algorithm for creating geometallurgy models, which includes several components: exploration, mineralogical and petrographic, technological, statistical, geostatistical and economic. The most important points of modeling are studies to identify the factors that determine the ore processing and criteria for ore typification, which ultimately leads to the development of principles for recognizing types of ore in each geological sample. It is in this way that the geological database is converted into a geological-technological database, and a geological-technological model is created on its basis.

Keywords:

modeling in geology, mineral processing, geometallurgy, geometallurgy models

Downloads

Download data is not yet available.
 

References

Литература

Апухтина, И. В., 2008. Совершенствование методики оценки запасов месторождений железистых кварцитов на основе трехмерного компьютерного моделирования. https://www.dissercat.com/content/sovershenstvovanie-metodiki-otsenki-zapasov-mestorozhdenii-zhelezistykhkvartsitov-na-osnove.

Вершинин, А. С., Витковская, И. В., Эдельштейн, И. И., Вареня, Г. Д., 1988. Технологическая минералогия гипергенных никелевых руд. Наука, Ленинград.

Глаголев, А. А., 1941. Геометрические методы количественного анализа агрегатов под микроскопом. Государственное издательство геологической литературы комитета по делам геологии при СНК СССР, Москва, Ленинград.

Зеленов, В. И., 1989. Методика исследования золото- и серебросодержащих руд. Недра, Москва.

Изоитко, В. М, 1989. Технологическая минералогия вольфрамовых руд. Наука, Ленинград.

Изоитко, В. М., 1997. Технологическая минералогия и оценка руд. Наука, Санкт-Петербург.

Козин, В. З., 2008. Исследование руд на обогатимость. Изд-во УГГУ, Екатеринбург.

Количественный минералогический анализ дробленых руд, 1990. Методические указания НСОМ-МИ МинГео СССР 19. МинГео, Москва.

Коц, Г. А., Чернопятов, С. Ф., Шманенков, И. В., 1980. Технологическое опробование и картирование месторождений. Недра, Москва.

Куликов, А. А., Куликова, А. Б., 1988. Технико-методические основы опробования горных пород и руд на золото. Наука, Москва.

Малообъемное технологическое опробование и картирование рудных месторождений при разведке, 1979. ВИМС, Москва.

Виды и последовательность минералогических исследований для обеспечения технологических работ, 1990. Методические указания НСОММИ МинГео СССР 31. МинГео, Москва.

Мишулович, П. М., Петров С. В., 2009. Создание блочной геолого-технологической модели молибденового месторождения. Труды V Всероссийской научной школы «Математические исследования в естественных науках», 157–163.

Петров, С. В., 2005. Методологические и терминологические аспекты изучения форм нахождения золота в рудах. Обогащение руд 2, 27–30.

Петров, С. В., 2015. О зависимости флотационного извлечения платиноидов от содержания металлов в руде. Обогащение руд 5, 14–19.

Петров, С. В., Мишулович, П. М., Смоленский, В. В., 2010. Принципы создания блочной геолого-технологической модели месторождения. Обогащение руд 6, 34–38.

Пирогов, Б. И., 1988. Технологическая минералогия железных руд. Наука, Ленинград.

Сидоренко, Г. А., Александрова, И. Т., Петрова, Н. В., 1992. Технологическая минералогия редкометалльных руд. Наука, Санкт-Петербург.

Deutsch, C. V., 2013. Geostatistical Modelling of Geometallurgical Variables — Problems and Solutions. The Second AUSIMM International Geometallurgy Conference. Brisbane, 7–15.

Doll, A., 2015. Geometallurgy basics for mineral processing applications. Sagmilling, Canada.

Goodall, W. R., Scales, P. J., Butcher, A. R., 2005. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Minerals Engineering 18(8), 877–886. https://doi.org/10.1016/j.mineng.2005.01.018.

Joint Ore Reserves Committee, 2012. The JORC Code 2012 Edition. AusImm, AIG, MCA, Carlton South, Australia.

Kingl, G. S., Macdonald, J. L., 2016. The Business Case for Early-stage Implementation of Geometallurgy — an example from the Productora Cu-Mo-Au deposit, Chile. Third International Geometallurgy Conference 2016.

Lamberg, P., 2011. Particles — the bridge between geology and metallurgy. Lulea University of Technology, Lulea, Sweden.

Lishchuk, V., 2016. Geometallurgical programs — critical evaluation of applied methods and techniques. Lulea University of Technology, Lulea, Sweden.

Petruk, W., 2000. Applied mineralogy in the mining industry. Elsevier, Ottawa.

Rendu, J.-M., 2008. An introduction to cut-off grade estimation. SME, Littleton, Colorado, USA.

Sun, W., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications of Mantle Composition and Processes. Geological Society, London, Special Publications 42, 313–345.


References

Apukhtina, I. V., 2008. Sovershenstvovanie metodiki otsenki zapasov mestorozhdenii zhelezistykh kvartsitov na osnove trekhmernogo komp'iuternogo modelirovaniia. https://www.dissercat.com/content/sovershenstvovanie-metodiki-otsenki-zapasov-mestorozhdenii-zhelezistykhkvartsitov-na-osnove. (In Russian)

Deutsch, C. V., 2013. Geostatistical Modelling of Geometallurgical Variables — Problems and Solutions. The Second AUSIMM International Geometallurgy Conference. Brisbane, 7–15.

Doll, A., 2015. Geometallurgy basics for mineral processing applications. Sagmilling, Canada.

Glagolev A. A., 1941. Geometricheskie metody kolichestvennogo analiza agregatov pod mikroskopom [Geometric methods of quantitative analysis of aggregates under a microscope]. Gosudarstvennoye izdatel’stvo geologicheskoy literatury komiteta po delam geologii pri SNK SSSR Publ., Moscow, Leningrad. (In Russian)

Goodall, W. R., Scales, P. J., Butcher, A. R., 2005. The use of QEMSCAN and diagnostic leaching in the characterisation of visible gold in complex ores. Minerals Engineering 18(8), 877–886. https://doi.org/10.1016/j.mineng.2005.01.018.

Izotko, V. M., 1989. Tekhnologicheskaia mineralogiia vol'framovykh rud [Technological mineralogy of tungsten ores]. Nauka Publ., Leningrad. (In Russian)

Izotko, V. M., 1997. Tekhnologicheskaia mineralogiia i otsenka rud [Technological mineralogy and ore evaluation]. Nauka Publ., St. Petersburg. (In Russian)

Joint Ore Reserves Committee, 2012. The JORC Code 2012 Edition. AusImm, AIG, MCA, Carlton South, Australia.

Kingl, G. S., Macdonald, J. L., 2016. The Business Case for Early-stage Implementation of Geometallurgy — an example from the Productora Cu-Mo-Au deposit, Chile. Third International Geometallurgy Conference 2016.

Kolichestvennyi mineralogicheskii analiz droblenykh rud. Metodicheskie ukazaniia NSOMMI MinGeo SSSR [Quantitative mineralogical analysis of crushed ores. Methodological guidelines of the NSOMMI MinGeo USSR], 1990. MinGeo Publ., Moscow. (In Russian)

Kotz, G. A., Chernopyatov, S. F., Shmanenkov I. V., 1980. Tekhnologicheskoe oprobovanie i kartirovanie mestorozhdenii [Technological sampling and mapping of deposits]. Nedra Publ., Moscow (In Russian)

Kozin V. Z., 2008. Issledovanie rud na obogatimost' [Research of ores for mineral dressing]. UGGU Publ., Yekaterinburg. (In Russian)

Kulikov A. A., Kulikova A. B., 1988. Tekhniko-metodicheskie osnovy oprobovaniia gornykh porod i rud na zoloto [Technical and methodological fundamentals of testing rocks and ores for gold]. Nedra Publ., Moscow. (In Russian)

Lamberg, P., 2011. Particles — the bridge between geology and metallurgy. Lulea University of Technology, Lulea, Sweden.

Lishchuk, V., 2016. Geometallurgical programs — critical evaluation of applied methods and techniques. Lulea University of Technology, Lulea, Sweden.

Maloob”emnoe tekhnologicheskoe oprobovanie i kartirovanie rudnykh mestorozhdenii pri razvedke. [Lowvolume technological sampling and mapping of ore deposits during exploration], 1979. VIMS Publ., Moscow. (In Russian)

Mishulovich P. M., Petrov S. V., 2009. Sozdanie blochnoi geologo-tekhnologicheskoi modeli molibdenovogo mestorozhdeniia. [Creation of a block geological and technological model of the molybdenum deposit. Trudy V Vserossiiskoi nauchnoi shkoly “Matematicheskie issledovaniia v estestvennykh naukakh” [Proceedings of the V All-Russian scientific school “Mathematical research in the natural sciences”]. K&M Publ., Apatity, 156–163. (In Russian)

Petrov, S. V., 2005. Metodologicheskie i terminologicheskie aspekty izucheniia form nakhozhdeniia zolota v rudakh [Methodological and terminological aspects of studying the forms of gold in ores]. Obogashchenie rud [Enrichment of ores] 2, 27–30. (In Russian)

Petrov, S. V., 2015. O zavisimosti flotatsionnogo izvlecheniia platinoidov ot soderzhaniia metallov v rude [Upon dependence of platinum-group metals flotation recovery on metals grade in ore]. Obogashchenie rud [Enrichment of ores] 5, 14–19. (In Russian)

Petrov, S. V., Mishulovich, P. M., Smolensky, V. V., 2010. Printsipy sozdaniia blochnoi geologo-tekhnologicheskoi modeli mestorozhdeniia [Principles of creating a block geological and technological model of the field]. Obogashchenie rud [Enrichment of ores] 6, 34–38. (In Russian)

Petruk, W., 2000. Applied mineralogy in the mining industry. Elsevier, Ottawa.

Pirogov, B. I., 1988. Tekhnologicheskaia mineralogiia zheleznykh rud [Technological mineralogy of iron ores]. Nauka Publ., Leningrad. (In Russian)

Rendu, J.-M., 2008. An introduction to cut-off grade estimation. SME, Littleton, Colorado, USA.

Sidorenko, G. A., Aleksandrova, I. T., Petrova, N. V., 1992. Tekhnologicheskaia mineralogiia redkometall'nykh rud [Technological mineralogy of rare metal ores]. Nauka Publ., St. Petersburg. (In Russian)

Sun, W., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications of Mantle Composition and Processes. Geological Society, London, Special Publications 42, 313–345.

Vershinin, A. S., Vitkovskaya, I. V., Edel’shteyn, I. I., Varenya, G. D., 1988. Tekhnologicheskaia mineralogiia gipergennykh nikelevykh rud [Technological mineralogy of hypergenic nickel ores]. Nauka Publ., Leningrad. (In Russian)

Vidy i posledovatel'nost' mineralogicheskikh issledovanii dlia obespecheniia tekhnologicheskikh rabot. Metodicheskie ukazaniia NSOMMI MinGeo SSSR [Types and sequence of mineralogical studies for the provision of technological work. Methodical instructions of the NSOMMI (Scientific Council on Mineralogical Research Methods) MinGeo USSR], 1990. MinGeo Publ., Moscow. (In Russian)

Zelenov V. I., 1989. Metodika issledovaniia zoloto- i serebrosoderzhashchikh rud [Methods for studying gold and silver-containing ores]. Nedra Publ., Moscow. (In Russian)

Published

2019-06-01

How to Cite

Мишулович, П. М. and Петров, С. В. (2019) “Geometallurgical models creation principles”, Vestnik of Saint Petersburg University. Earth Sciences, 64(2), pp. 249–266. doi: 10.21638/spbu07.2019.205.

Issue

Section

Articles

Most read articles by the same author(s)