Isotopic and geochemical characteristics of Cambrian phosphorites of Karatau Basin (Southern Kazakhstan)

Authors

  • Irina A Vishnevskaya Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian Branch, 3, Koptyug Pr. Novosibirsk, 630090, Russian Federation; Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation https://orcid.org/0000-0002-8057-376X
  • Viktor I Malov Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian Branch, 3, Koptyug Pr. Novosibirsk, 630090, Russian Federation; Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation
  • Natalia Soloshenko Zavaritsky Institute of Geology and Geochemistry, Russian Academy of Sciences, Ural Branch, 15, Vonsovskii str., Yekaterinburg, 620016, Russian Federation
  • Anna F Letnikova Irkutsk State University, 1, K. Marksa str. Irkutsk, 664003, Russian Federation
  • Valentina Yu Kiseleva Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian Branch, 3, Koptyug Pr. Novosibirsk, 630090, Russian Federation
  • Alexander V Ivanov Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Siberian Branch, 3, Koptyug Pr. Novosibirsk, 630090, Russian Federation; Irkutsk State University, 1, K. Marksa str. Irkutsk, 664003, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2018.302

Abstract

The article is devoted to studying of isotope-geochemical characteristics of phosphorite and the enclosing carbonate Karatau Phosphorus deposit. As a result of the work on the identification of the least altered rocks, the primary isotopic composition of Sr, C and O in the water of the Karatau basin was established, as well as the isotopic composition of Nd phosphorites. Kyrshabakty Formation underlying phosphorite characterized 87Sr/86Sr ratio 0.70839, δ13C value ranges from +0.2 to 0.6 ‰. The primary Sr isotopic composition of the phosphate-bearing Chulaktau Formation, varies from 0.70877 to 0.70905, and the carbon isotope composition ranges from –3.1 to 0.8 ‰. Based on these data, the sedimentation interval of these rocks was established. Phosphate accumulation within the Karatau basin occurred in the range of 520–509 million years ago as a result of biogenic precipitation of the phosphorus of ocean water on the shelf of the passive margin of the continent.

Keywords:

chemostratigraphy, strontium, neodymium, reconstruction of sedimentary basin

Downloads

Download data is not yet available.
 

References

Литература

Геология, 1986 / Абдулин, А. А., Чимбулатов, М. А., Ергалиев, Г. Х. (под ред.), Наука, Алма-Ата.

Еганов, Э. А., Розанов, А. Ю., Жегалло, Е. А., 1999. Хубсугульский фосфоритоносный бассейн (ХФБ), Монголия, Россия, в: Природа фосфатных зерен и фосфоритов крупнейших бассейнов мира. Дальнаука, Владивосток, 32–40.

Еганов, Э. А., Советов, Ю. К., 1979. Каратау — модель региона фосфоритонакопления. Наука, Новосибирск.

Еганов, Э. А., Ергалиев, Г. Х., Ильин, А. В., Краснов, А. А., 1984. Казахстан. Каратауский фосфоритоносный бассейн. Путеводитель экскурсии 045, в: 27-й международный геологический конгресс. Наука, Москва.

Alexeiev, D. V., Cook, H. E., Buvtyshkin, V. M., Golub, L. Ya., 2009. Structural evolution of the Ural—Tian Shan junction: A view from Karatau ridge, South Kazakhstan. Comptes Rendus Geoscience 341, 287–297. https://doi.org/10.1016/j.crte.2008.12.004.

Babcock, L. E., Peng, S.-C., Brett, C. E., Zhu, M.-Y., Ahlberg, P., Bevis, M., Robison, R. A., 2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, Is. 1–2, 5–15. http://dx.doi.org/10.1016/j.palwor.2015.03.005.

Banner, J. L., 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews 65, 141–194. https://doi.org/10.1016/S0012-8252(03)00086-2.

Bengtson, S., 1994. The advent of animal skeletons, in: Bengtson, S. (Ed.), Early Life on Earth. Nobel Symposium 84, 412–425.

Brasier, M. D., Shields, G., Kuleshov, V. N., Zhegallo, E. A., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133, 4, 445–485.

Brasier, M. D., Magaritz, M., Corfield, R., Hulin, L., Xiche, W., Lin, O., Zhiwen, J., Hamdi, B., Tinggui, H., Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 4, 319–332.

Geyer, G., Shergold, J., 2000. The quest for internationally recognized divisions of Cambrian time. Episodes 23, 188–195.

Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117, 9/10, 1181–1207.

Halverson, G. P., Wade, B. P., Hurtgen, M. T., Barovich, K. M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182(4), 337–350. https://doi.org/10.1016/j.precamres.2010.04.007.

Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Research 14, 193–208. https://doi.org/10.1016/j.gr.2007.10.008.

Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73(1–4), 27–49.

Kholodov, V. N., Nedumov, R. I., 2009. Association of manganese ore and phosphorite-bearing facies in sedimentary sequences: communication 2. Co-occurrence and paragenesis of P and Mn in Lower Paleozoic and Precambrian sediments. Lithology and Mineral Resources 44(2), 152–173.

Kirschvink, J. L., Hagadorn, J. W., 2000. Grand unified theory of biomineralization, in: Bäuerlein, E. (Ed.), The Biomineralisation of Nano- and Micro-structures. Wiley-VCH Verlag GmbH, Weinheim, Germany, 139–150.

Kolodny, Y., Luz, B., 1992. Isotope signatures in phosphate deposits: formation and diagenetic history, in: Clauer, N., Chaidhuri, S. (Eds.), Isotopic signatures and sedimentary records. Springer-Verlag.

Kuznetsov, A. B., Gorokhov, I. M., Mel’nikov, N. N., Konstantinova, G. V., Kutyavin, E. P., Semikhatov, M. A., 2003. Sr isotope composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean. Stratigraphy and Geological Correlation 11(5), 415–449.

Kuznetsov, A. B., Gorokhov, I. M., Semikhatov, M. A., 2014. The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian). Stratigraphy and Geological Correlation 22(6), 553–575.

Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins,J. A., Fike, D. A., Eddy, M. P., 2010. The earliest Cambrian record of animalsand ocean geochemical change. Geological Society of America Bulletin 122, 1731–1774. https://doi.org/10.1130/B30346.1.

Meert, J. G., Gibsher, A. S., Levashova, N. M., Grice, W. C., Kamenov, G. D., Ryabinin, A. B., 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19, 867–880. https://doi.org/10.1016/j.gr.2010.11.008.

Montañez, I. P., Banner, J. L., Mack, L. E., Musgrove, M., Osleger, D. A., 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 10, 1–7.

Ovchinnikova, G. V., Kuznetsov, A. B., Gorokhov, I. M., Letnikova, E. F., Kaurova, O. K., Gorokhovskii, B. M., 2011. U-Pb age and Sr-chemostratigraphy of limestone from the Sorna Formation, Azyr-Tal Range, Kuznetsk Alatau. Doklady Earth Sciences 437(1), 331–334.

Peng, S., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale, Elsevier, Boston, 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6.

Popov, L. E., Bassett, M. G., Zhemchuzhnikov, V. G., Holmer, L. E., Klishevich, I. A., 2009. Gondwanan faunal signatures from early Paleozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications, in: Bassett, M. G. (Ed.), Early Paleozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography: Geological Society of London, Special Publications, 325, 23–64.

Revyako, N. M., Kostitsyn, Y. A., Bychkova, Y. V., 2012. Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia. Petrology 20(2), 101–119.

Saltzman, M. R., Thomas, E., 2012. Carbon isotope stratigraphy, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale. Elsevier. http://dx.doi.org/10.1016/B978-0-444-59425-9.00011-1.

Sawaki, Y., Ohno, T., Fukushi, Y., Komiya, T., Ishikawa, T., Hirata, T., Maruyama, S., 2008. Sr isotope excursion across the Precambrian — Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 14, 134–147. https://doi.org/10.1016/j.gr.2007.11.002.

Shaw, H. F., Wasserburg, G. J., 1985. Sm—Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta 49, 503–518.

Veiser, J., 1983. Trace elements and isotopes in sedimentary carbonate. Carbonates: mineralogy and chemistry. Reviews in Mineralogy 11(2), 260–299.

Vishnevskaya, I. A., Letnikova, E. F., 2013. Chemostratigraphy of the Vendian-Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent. Russian Geology and Geophysics 54, 567–586. http://dx.doi.org/10.1016/j.rgg.2013.04.008.

Wang, X., Hu, W., Yao, S., Chen, Q., Xie, X., 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2 — Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology 28, 992–1002. https://doi.org/10.1016/j.marpetgeo.2011.01.006.

Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., Hu, J., 2012. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research 192–195, 125–141. https://doi.org/10.1016/j.precamres.2011.10.021.

Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C., He, H., 2009. SIMS U—Pb zircon age of a tuff layer in the Meishucun section Yunnan, southwest China: constraint on the age of the Precambrian — Cambrian boundary. Sci China Ser. D: Earth Science 52, 1385–1392.


References

Alexeiev, D. V., Cook, H. E., Buvtyshkin, V. M., Golub, L. Ya., 2009. Structural evolution of the Ural — Tian Shan junction: A view from Karatau ridge, South Kazakhstan. Comptes Rendus Geoscience 341, 287–297. https://doi.org/10.1016/j.crte.2008.12.004.

Babcock, L. E., Peng, S.-C., Brett, C. E., Zhu, M.-Y., Ahlberg, P., Bevis, M., Robison, R. A., 2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, Is.1–2, 5–15. http://dx.doi.org/10.1016/j.palwor.2015.03.005.

Banner, J. L., 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews 65, 141–194. https://doi.org/10.1016/S0012-8252(03)00086-2

Bengtson, S., 1994. The advent of animal skeletons, in: Bengtson, S. (Ed.), Early Life on Earth. Nobel Symposium 84, 412–425.

Brasier, M. D., Magaritz, M., Corfield, R., Hulin, L., Xiche, W., Lin, O., Zhiwen, J., Hamdi, B., Tinggui, H., Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 4, 319–332.

Brasier, M. D., Shields, G., Kuleshov, V. N., Zhegallo, E. A., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133, 4, 445–485.

Eganov, E. A., Rozanov, A. Yu., Zhegallo, E. A., 1999. Khubsugul’skii fosforitonosnyi bassein (KhFB), Mongoliia, Rossiia [The Hubsugul phosphorite basin (HFB), Mongolia, Russia], in: Priroda fosfatnykh zeren i fosforitov krupneishikh basseinov mira [Nature of phosphate grains and phosphorites of the world’s largest basins]. Dal’nauka, Vladivostok, 32–40. (In Russian)

Eganov, E. A., Sovetov, Y. K., 1979. Karatau — model’ regiona fosforitonakopleniia [Karatau — a model for phosphorite deposition]. Nauka, Novosibirsk. (In Russian)

Eganov, E. A, Ergaliev, G. Kh., Ilyin, A. V, Krasnov, A. A., 1984. Kazakhstan. Karatauskii fosforitonosnyi bassein. Putevoditel’ ekskursii 045 [Kazakhstan. Karatau phosphorite basin. Excursion guide 045]. 27-i mezhdunarodnyi geologicheskii kongress, Nauka, Moscow. (In Russian)

Geologiia [Geology], 1986. Abdulin, A. A., Chimbulatov, M. A., Ergaliev, G. Kh. (Eds.). Nauka, Alma-Ata. (In Russian)

Geyer, G., Shergold, J., 2000. The quest for internationally recognized divisions of Cambrian time. Episodes 23, 188–195.

Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117, 9/10, 1181–1207.

Halverson, G. P., Wade, B. P., Hurtgen, M. T., Barovich, K. M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182(4), 337–350. https://doi.org/10.1016/j.precamres.2010.04.007.

Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Research 14, 193–208. https://doi.org/10.1016/j.gr.2007.10.008.

Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73(1–4), 27–49.

Kholodov, V. N., Nedumov, R. I., 2009. Association of manganese ore and phosphorite-bearing facies in sedimentary sequences: communication 2. Co-occurrence and paragenesis of P and Mn in Lower Paleozoic and Precambrian sediments. Lithology and Mineral Resources 44(2), 152–173.

Kirschvink, J. L., Hagadorn, J. W., 2000. Grand unified theory of biomineralization, in: Bäuerlein, E. (Ed.), The Biomineralisation of Nano- and Micro-structures. Wiley-VCH Verlag GmbH, Weinheim, Germany, 139–150.

Kolodny, Y., Luz, B., 1992. Isotope signatures in phosphate deposits: formation and diagenetic history, in: Clauer, N., Chaidhuri, S. (Eds.) Isotopic signatures and sedimentary records. Springer-Verlag.

Kuznetsov, A. B., Gorokhov, I. M., Mel’nikov, N. N., Konstantinova, G. V., Kutyavin, E. P., Semikhatov, M. A., 2003. Sr isotope composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean. Stratigraphy and Geological Correlation 11(5), 415–449.

Kuznetsov, A. B., Gorokhov, I. M., Semikhatov, M. A., 2014. The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian). Stratigraphy and Geological Correlation 22(6), 553–575.

Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins,J. A., Fike, D. A., Eddy, M. P., 2010. The earliest Cambrian record of animalsand ocean geochemical change. Geological Society of America Bulletin 122, 1731–1774. https://doi.org/10.1130/B30346.1.

Meert, J. G., Gibsher, A. S., Levashova, N. M., Grice, W. C., Kamenov, G. D., Ryabinin, A. B., 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19, 867–880. https://doi.org/10.1016/j.gr.2010.11.008.

Montañez, I. P., Banner, J. L., Mack, L. E., Musgrove, M., Osleger, D. A., 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10, 1–7.

Ovchinnikova, G. V., Kuznetsov, A. B., Gorokhov, I. M., Letnikova, E. F., Kaurova, O. K., Gorokhovskii, B. M., 2011. U-Pb age and Sr-chemostratigraphy of limestone from the Sorna Formation, Azyr-Tal Range, Kuznetsk Alatau. Doklady Earth Sciences 437(1), 331–334.

Peng, S., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale, Elsevier, Boston, 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6.

Popov, L. E., Bassett, M. G., Zhemchuzhnikov, V. G., Holmer, L. E., Klishevich, I. A., 2009. Gondwanan faunal signatures from early Paleozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications. In: Bassett, M. G. (Ed.), Early Paleozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography: Geological Society of London, Special Publications, 325, 23–64.

Revyako, N. M., Kostitsyn, Y. A., Bychkova, Y. V., 2012. Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia. Petrology 20(2), 101–119.

Saltzman, M. R., Thomas, E., 2012. Carbon isotope stratigraphy, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale. Elsevier. http://dx.doi.org/10.1016/B978-0-444-59425-9.00011-1.

Sawaki, Y., Ohno, T., Fukushi, Y., Komiya, T., Ishikawa, T., Hirata, T., Maruyama, S., 2008. Sr isotope excursion across the Precambrian — Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 14, 134–147. https://doi.org/10.1016/j.gr.2007.11.002.

Shaw, H. F., Wasserburg, G. J., 1985. Sm—Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta 49, 503– 518.

Veiser, J., 1983. Trace elements and isotopes in sedimentary carbonate. Carbonates: mineralogy and chemistry. Reviews in Mineralogy 11(2), 260–299.

Vishnevskaya, I. A., Letnikova, E. F., 2013. Chemostratigraphy of the Vendian-Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent. Russian Geology and Geophysics 54, 567–586. http://dx.doi.org/10.1016/j.rgg.2013.04.008.

Wang, X., Hu, W., Yao, S., Chen, Q., Xie, X., 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2 — Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology 28, 992–1002. https://doi.org/10.1016/j.marpetgeo.2011.01.006.

Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., Hu, J., 2012. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research 192–195, 125–141. https://doi.org/10.1016/j.precamres.2011.10.021.

Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C., He, H., 2009. SIMS U–Pb zircon age of a tuff layer in the Meishucun section Yunnan, southwest China: constraint on the age of the Precambrian—Cambrian boundary. Sci China Ser. D: Earth Science 52, 1385–1392.

Published

2018-11-12

How to Cite

Vishnevskaya, I. A. (2018) “Isotopic and geochemical characteristics of Cambrian phosphorites of Karatau Basin (Southern Kazakhstan)”, Vestnik of Saint Petersburg University. Earth Sciences, 63(3), pp. 267–290. doi: 10.21638/spbu07.2018.302.

Issue

Section

Articles