Изотопно-геохимические особенности кембрийских фосфоритов Каратауского бассейна (Южный Казахстан)

Авторы

  • Ирина Андреевна Вишневская Институт геологии и минералогии им. В. С. Соболева СО РАН, Российская Федерация, 630090, Новосибирск, пр. Академика Коптюга, 3; Новосибирский государственный университет, Российская Федерация, 630090, Новосибирск, ул. Пирогова, 2 https://orcid.org/0000-0002-8057-376X
  • Виктор Игоревич Малов Институт геологии и минералогии им. В. С. Соболева СО РАН, Российская Федерация, 630090, Новосибирск, пр. Академика Коптюга, 3; Новосибирский государственный университет, Российская Федерация, 630090, Новосибирск, ул. Пирогова, 2
  • Наталья Геннадьевна Солошенко Институт геологи и геохимии им. А. Н. Заварицкого, Российская Федерация, 620016, Екатеринбург, ул. Академика Вонсовского, 15
  • Анна Феликсовна Летникова Иркутский государственный университет, Российская Федерация, 664003, Иркутск, ул. Карла Маркса, 1
  • Валентина Юрьевна Киселева Институт геологии и минералогии им. В. С. Соболева СО РАН, Российская Федерация, 630090, Новосибирск, пр. Академика Коптюга, 3
  • Александр Владимирович Иванов Институт геологии и минералогии им. В. С. Соболева СО РАН, Российская Федерация, 630090, Новосибирск, пр. Академика Коптюга, 3; Иркутский государственный университет, Российская Федерация, 664003, Иркутск, ул. Карла Маркса, 1

DOI:

https://doi.org/10.21638/spbu07.2018.302

Аннотация

Статья посвящена изучению изотопно-геохимических характеристик фосфоритов и вмещающих их карбонатов Каратауского месторождения P. В результате проведенной работы были выявлены наименее измененные породы и установлен первичный изотопный состав Sr, С и О в воде Каратауского бассейна, а также изотопный состав Nd фосфоритов. Карбонаты кыршабактинской свиты, подстилающие фосфатоносные породы, характеризуются соотношением 87Sr/86Sr = 0,70839, значение δ13C изменяется от 0,2 до 0,6 ‰. В породах фосфатоносной чулактауской свиты первичный изотопный состав Sr варьирует от 0,70877 до 0,70905, а изотопный состав C изменяется от –3,1 до 0,8‰. На основе этих данных установлен интервал их седиментации. Фосфатонакопление в пределах Каратауского бассейна проходило в раннем кембрии, вероятно, 520–509 млн лет назад, в результате биогенного осаждения P из океанической воды на шельфе пассивной окраины континента.

Ключевые слова:

хемостратиграфия, Sr, Nd, реконструкция осадочного бассейна

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Геология, 1986 / Абдулин, А. А., Чимбулатов, М. А., Ергалиев, Г. Х. (под ред.), Наука, Алма-Ата.

Еганов, Э. А., Розанов, А. Ю., Жегалло, Е. А., 1999. Хубсугульский фосфоритоносный бассейн (ХФБ), Монголия, Россия, в: Природа фосфатных зерен и фосфоритов крупнейших бассейнов мира. Дальнаука, Владивосток, 32–40.

Еганов, Э. А., Советов, Ю. К., 1979. Каратау — модель региона фосфоритонакопления. Наука, Новосибирск.

Еганов, Э. А., Ергалиев, Г. Х., Ильин, А. В., Краснов, А. А., 1984. Казахстан. Каратауский фосфоритоносный бассейн. Путеводитель экскурсии 045, в: 27-й международный геологический конгресс. Наука, Москва.

Alexeiev, D. V., Cook, H. E., Buvtyshkin, V. M., Golub, L. Ya., 2009. Structural evolution of the Ural—Tian Shan junction: A view from Karatau ridge, South Kazakhstan. Comptes Rendus Geoscience 341, 287–297. https://doi.org/10.1016/j.crte.2008.12.004.

Babcock, L. E., Peng, S.-C., Brett, C. E., Zhu, M.-Y., Ahlberg, P., Bevis, M., Robison, R. A., 2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, Is. 1–2, 5–15. http://dx.doi.org/10.1016/j.palwor.2015.03.005.

Banner, J. L., 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews 65, 141–194. https://doi.org/10.1016/S0012-8252(03)00086-2.

Bengtson, S., 1994. The advent of animal skeletons, in: Bengtson, S. (Ed.), Early Life on Earth. Nobel Symposium 84, 412–425.

Brasier, M. D., Shields, G., Kuleshov, V. N., Zhegallo, E. A., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133, 4, 445–485.

Brasier, M. D., Magaritz, M., Corfield, R., Hulin, L., Xiche, W., Lin, O., Zhiwen, J., Hamdi, B., Tinggui, H., Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 4, 319–332.

Geyer, G., Shergold, J., 2000. The quest for internationally recognized divisions of Cambrian time. Episodes 23, 188–195.

Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117, 9/10, 1181–1207.

Halverson, G. P., Wade, B. P., Hurtgen, M. T., Barovich, K. M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182(4), 337–350. https://doi.org/10.1016/j.precamres.2010.04.007.

Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Research 14, 193–208. https://doi.org/10.1016/j.gr.2007.10.008.

Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73(1–4), 27–49.

Kholodov, V. N., Nedumov, R. I., 2009. Association of manganese ore and phosphorite-bearing facies in sedimentary sequences: communication 2. Co-occurrence and paragenesis of P and Mn in Lower Paleozoic and Precambrian sediments. Lithology and Mineral Resources 44(2), 152–173.

Kirschvink, J. L., Hagadorn, J. W., 2000. Grand unified theory of biomineralization, in: Bäuerlein, E. (Ed.), The Biomineralisation of Nano- and Micro-structures. Wiley-VCH Verlag GmbH, Weinheim, Germany, 139–150.

Kolodny, Y., Luz, B., 1992. Isotope signatures in phosphate deposits: formation and diagenetic history, in: Clauer, N., Chaidhuri, S. (Eds.), Isotopic signatures and sedimentary records. Springer-Verlag.

Kuznetsov, A. B., Gorokhov, I. M., Mel’nikov, N. N., Konstantinova, G. V., Kutyavin, E. P., Semikhatov, M. A., 2003. Sr isotope composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean. Stratigraphy and Geological Correlation 11(5), 415–449.

Kuznetsov, A. B., Gorokhov, I. M., Semikhatov, M. A., 2014. The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian). Stratigraphy and Geological Correlation 22(6), 553–575.

Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins,J. A., Fike, D. A., Eddy, M. P., 2010. The earliest Cambrian record of animalsand ocean geochemical change. Geological Society of America Bulletin 122, 1731–1774. https://doi.org/10.1130/B30346.1.

Meert, J. G., Gibsher, A. S., Levashova, N. M., Grice, W. C., Kamenov, G. D., Ryabinin, A. B., 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19, 867–880. https://doi.org/10.1016/j.gr.2010.11.008.

Montañez, I. P., Banner, J. L., Mack, L. E., Musgrove, M., Osleger, D. A., 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 10, 1–7.

Ovchinnikova, G. V., Kuznetsov, A. B., Gorokhov, I. M., Letnikova, E. F., Kaurova, O. K., Gorokhovskii, B. M., 2011. U-Pb age and Sr-chemostratigraphy of limestone from the Sorna Formation, Azyr-Tal Range, Kuznetsk Alatau. Doklady Earth Sciences 437(1), 331–334.

Peng, S., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale, Elsevier, Boston, 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6.

Popov, L. E., Bassett, M. G., Zhemchuzhnikov, V. G., Holmer, L. E., Klishevich, I. A., 2009. Gondwanan faunal signatures from early Paleozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications, in: Bassett, M. G. (Ed.), Early Paleozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography: Geological Society of London, Special Publications, 325, 23–64.

Revyako, N. M., Kostitsyn, Y. A., Bychkova, Y. V., 2012. Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia. Petrology 20(2), 101–119.

Saltzman, M. R., Thomas, E., 2012. Carbon isotope stratigraphy, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale. Elsevier. http://dx.doi.org/10.1016/B978-0-444-59425-9.00011-1.

Sawaki, Y., Ohno, T., Fukushi, Y., Komiya, T., Ishikawa, T., Hirata, T., Maruyama, S., 2008. Sr isotope excursion across the Precambrian — Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 14, 134–147. https://doi.org/10.1016/j.gr.2007.11.002.

Shaw, H. F., Wasserburg, G. J., 1985. Sm—Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta 49, 503–518.

Veiser, J., 1983. Trace elements and isotopes in sedimentary carbonate. Carbonates: mineralogy and chemistry. Reviews in Mineralogy 11(2), 260–299.

Vishnevskaya, I. A., Letnikova, E. F., 2013. Chemostratigraphy of the Vendian-Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent. Russian Geology and Geophysics 54, 567–586. http://dx.doi.org/10.1016/j.rgg.2013.04.008.

Wang, X., Hu, W., Yao, S., Chen, Q., Xie, X., 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2 — Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology 28, 992–1002. https://doi.org/10.1016/j.marpetgeo.2011.01.006.

Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., Hu, J., 2012. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research 192–195, 125–141. https://doi.org/10.1016/j.precamres.2011.10.021.

Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C., He, H., 2009. SIMS U—Pb zircon age of a tuff layer in the Meishucun section Yunnan, southwest China: constraint on the age of the Precambrian — Cambrian boundary. Sci China Ser. D: Earth Science 52, 1385–1392.


References

Alexeiev, D. V., Cook, H. E., Buvtyshkin, V. M., Golub, L. Ya., 2009. Structural evolution of the Ural — Tian Shan junction: A view from Karatau ridge, South Kazakhstan. Comptes Rendus Geoscience 341, 287–297. https://doi.org/10.1016/j.crte.2008.12.004.

Babcock, L. E., Peng, S.-C., Brett, C. E., Zhu, M.-Y., Ahlberg, P., Bevis, M., Robison, R. A., 2015. Global climate, sea level cycles, and biotic events in the Cambrian Period. Palaeoworld 24, Is.1–2, 5–15. http://dx.doi.org/10.1016/j.palwor.2015.03.005.

Banner, J. L., 2004. Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Science Reviews 65, 141–194. https://doi.org/10.1016/S0012-8252(03)00086-2

Bengtson, S., 1994. The advent of animal skeletons, in: Bengtson, S. (Ed.), Early Life on Earth. Nobel Symposium 84, 412–425.

Brasier, M. D., Magaritz, M., Corfield, R., Hulin, L., Xiche, W., Lin, O., Zhiwen, J., Hamdi, B., Tinggui, H., Fraser, A. G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 4, 319–332.

Brasier, M. D., Shields, G., Kuleshov, V. N., Zhegallo, E. A., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geological Magazine 133, 4, 445–485.

Eganov, E. A., Rozanov, A. Yu., Zhegallo, E. A., 1999. Khubsugul’skii fosforitonosnyi bassein (KhFB), Mongoliia, Rossiia [The Hubsugul phosphorite basin (HFB), Mongolia, Russia], in: Priroda fosfatnykh zeren i fosforitov krupneishikh basseinov mira [Nature of phosphate grains and phosphorites of the world’s largest basins]. Dal’nauka, Vladivostok, 32–40. (In Russian)

Eganov, E. A., Sovetov, Y. K., 1979. Karatau — model’ regiona fosforitonakopleniia [Karatau — a model for phosphorite deposition]. Nauka, Novosibirsk. (In Russian)

Eganov, E. A, Ergaliev, G. Kh., Ilyin, A. V, Krasnov, A. A., 1984. Kazakhstan. Karatauskii fosforitonosnyi bassein. Putevoditel’ ekskursii 045 [Kazakhstan. Karatau phosphorite basin. Excursion guide 045]. 27-i mezhdunarodnyi geologicheskii kongress, Nauka, Moscow. (In Russian)

Geologiia [Geology], 1986. Abdulin, A. A., Chimbulatov, M. A., Ergaliev, G. Kh. (Eds.). Nauka, Alma-Ata. (In Russian)

Geyer, G., Shergold, J., 2000. The quest for internationally recognized divisions of Cambrian time. Episodes 23, 188–195.

Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C., Rice, A. H. N., 2005. Toward a Neoproterozoic composite carbon-isotope record. GSA Bulletin 117, 9/10, 1181–1207.

Halverson, G. P., Wade, B. P., Hurtgen, M. T., Barovich, K. M., 2010. Neoproterozoic chemostratigraphy. Precambrian Research 182(4), 337–350. https://doi.org/10.1016/j.precamres.2010.04.007.

Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian explosion. Gondwana Research 14, 193–208. https://doi.org/10.1016/j.gr.2007.10.008.

Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research 73(1–4), 27–49.

Kholodov, V. N., Nedumov, R. I., 2009. Association of manganese ore and phosphorite-bearing facies in sedimentary sequences: communication 2. Co-occurrence and paragenesis of P and Mn in Lower Paleozoic and Precambrian sediments. Lithology and Mineral Resources 44(2), 152–173.

Kirschvink, J. L., Hagadorn, J. W., 2000. Grand unified theory of biomineralization, in: Bäuerlein, E. (Ed.), The Biomineralisation of Nano- and Micro-structures. Wiley-VCH Verlag GmbH, Weinheim, Germany, 139–150.

Kolodny, Y., Luz, B., 1992. Isotope signatures in phosphate deposits: formation and diagenetic history, in: Clauer, N., Chaidhuri, S. (Eds.) Isotopic signatures and sedimentary records. Springer-Verlag.

Kuznetsov, A. B., Gorokhov, I. M., Mel’nikov, N. N., Konstantinova, G. V., Kutyavin, E. P., Semikhatov, M. A., 2003. Sr isotope composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean. Stratigraphy and Geological Correlation 11(5), 415–449.

Kuznetsov, A. B., Gorokhov, I. M., Semikhatov, M. A., 2014. The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian). Stratigraphy and Geological Correlation 22(6), 553–575.

Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins,J. A., Fike, D. A., Eddy, M. P., 2010. The earliest Cambrian record of animalsand ocean geochemical change. Geological Society of America Bulletin 122, 1731–1774. https://doi.org/10.1130/B30346.1.

Meert, J. G., Gibsher, A. S., Levashova, N. M., Grice, W. C., Kamenov, G. D., Ryabinin, A. B., 2011. Glaciation and ~770 Ma Ediacara (?) fossils from the Lesser Karatau microcontinent, Kazakhstan. Gondwana Research 19, 867–880. https://doi.org/10.1016/j.gr.2010.11.008.

Montañez, I. P., Banner, J. L., Mack, L. E., Musgrove, M., Osleger, D. A., 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today, 10, 1–7.

Ovchinnikova, G. V., Kuznetsov, A. B., Gorokhov, I. M., Letnikova, E. F., Kaurova, O. K., Gorokhovskii, B. M., 2011. U-Pb age and Sr-chemostratigraphy of limestone from the Sorna Formation, Azyr-Tal Range, Kuznetsk Alatau. Doklady Earth Sciences 437(1), 331–334.

Peng, S., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale, Elsevier, Boston, 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6.

Popov, L. E., Bassett, M. G., Zhemchuzhnikov, V. G., Holmer, L. E., Klishevich, I. A., 2009. Gondwanan faunal signatures from early Paleozoic terranes of Kazakhstan and Central Asia: evidence and tectonic implications. In: Bassett, M. G. (Ed.), Early Paleozoic Peri-Gondwana Terranes: New Insights from Tectonics and Biogeography: Geological Society of London, Special Publications, 325, 23–64.

Revyako, N. M., Kostitsyn, Y. A., Bychkova, Y. V., 2012. Interaction between a mafic melt and host rocks during formation of the Kivakka layered intrusion, North Karelia. Petrology 20(2), 101–119.

Saltzman, M. R., Thomas, E., 2012. Carbon isotope stratigraphy, in: Gradstein, F. M., Ogg, J. G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale. Elsevier. http://dx.doi.org/10.1016/B978-0-444-59425-9.00011-1.

Sawaki, Y., Ohno, T., Fukushi, Y., Komiya, T., Ishikawa, T., Hirata, T., Maruyama, S., 2008. Sr isotope excursion across the Precambrian — Cambrian boundary in the Three Gorges area, South China. Gondwana Research, 14, 134–147. https://doi.org/10.1016/j.gr.2007.11.002.

Shaw, H. F., Wasserburg, G. J., 1985. Sm—Nd in marine carbonates and phosphates: implications for Nd isotopes in seawater and crustal ages. Geochim. Cosmochim. Acta 49, 503– 518.

Veiser, J., 1983. Trace elements and isotopes in sedimentary carbonate. Carbonates: mineralogy and chemistry. Reviews in Mineralogy 11(2), 260–299.

Vishnevskaya, I. A., Letnikova, E. F., 2013. Chemostratigraphy of the Vendian-Cambrian carbonate sedimentary cover of the Tuva-Mongolian microcontinent. Russian Geology and Geophysics 54, 567–586. http://dx.doi.org/10.1016/j.rgg.2013.04.008.

Wang, X., Hu, W., Yao, S., Chen, Q., Xie, X., 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2 — Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology 28, 992–1002. https://doi.org/10.1016/j.marpetgeo.2011.01.006.

Xiao, S., McFadden, K. A., Peek, S., Kaufman, A. J., Zhou, C., Jiang, G., Hu, J., 2012. Integrated chemostratigraphy of the Doushantuo Formation at the northern Xiaofenghe section (Yangtze Gorges, South China) and its implication for Ediacaran stratigraphic correlation and ocean redox models. Precambrian Research 192–195, 125–141. https://doi.org/10.1016/j.precamres.2011.10.021.

Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C., He, H., 2009. SIMS U–Pb zircon age of a tuff layer in the Meishucun section Yunnan, southwest China: constraint on the age of the Precambrian—Cambrian boundary. Sci China Ser. D: Earth Science 52, 1385–1392.

Загрузки

Опубликован

12.11.2018

Как цитировать

Вишневская, И. А. (2018) «Изотопно-геохимические особенности кембрийских фосфоритов Каратауского бассейна (Южный Казахстан)», Вестник Санкт-Петербургского университета. Науки о Земле, 63(3), сс. 267–290. doi: 10.21638/spbu07.2018.302.

Выпуск

Раздел

Статьи

Наиболее читаемые статьи этого автора (авторов)