Dynamics of the forest cover of raised bogs in southern taiga: Zapadnaya Dvina forest peatland station as an example (Tver region)
DOI:
https://doi.org/10.21638/spbu07.2024.308Abstract
The article is devoted to testing the hypothesis about the current increase in the forest cover of raised bogs in the forest zone, depending on changes in climatic conditions. To analyze the dynamics of forest cover using the example of raised bogs in the Tver region, a methodology was developed based on the use of different generations of Landsat satellite data. The methodology was tested on ground data and applied to analyze changes in forest cover between 1976 and 2022 in several raised bog areas, including undisturbed areas and areas drained for forestry. The study tested approximately 20 vegetation indices across a variety of surveys, including summer and winter (snow) conditions. The classification results were verified using planting taxation data on circular plots and assessed using error matrices. Moderate-resolution Landsat satellite imagery, especially winter imagery, has been found to be suitable for long-term analysis of afforestation dynamics in raised bogs. An optimal vegetation index SWVI (Short wave vegetation index) and classification technique are proposed. The results of the study showed that afforestation increases in all undrained areas of swamps, regardless of their initial state. The smallest changes are observed for areas with low crown density (0-0.1), to a greater extent for density 0.2-0.3, and the greatest changes occur in areas with high crown density (0.6-0.7 and higher).
Keywords:
raised bogs, afforestation, remote sensing, satellite imagery, Landsat, vegetation index, climate change, forest drainage
Downloads
References
Аболин, Р. И. (1915). Болотные формы Pinus silvestris L. Труды Ботанического музея Академии наук, 14, 62-84.
Ветров, Л. С., ред. (2013). Таксация леса: методические указания. СПб.: СПбГЛТУ.
Вомперский, С. Э., Иванов, А. И., Цыганова, О. П., Валяева, Н. А., Глухова, Т. В., Дубинин, А. И., Глухов, А. И., Маркелова, Л. Г. (1994). Заболоченные органогенные почвы и болота России и запас углерода в их торфах. Почвоведение, 12, 17-25.
Вомперский, С. Э., Сирин, А. А., Цыганова, О. П., Валяева, Н. А., Майков, Д. А. (2005). Болота и заболоченные земли России: попытка анализа пространственного распределения и разнообразия. Известия Российской академии наук. Серия географическая, 5, 39-50.
Вомперский, С. Э., Глухова, Т. В., Смагина, М. В., Ковалев, А. Г. (2007). Условия и последствия пожаров в сосняках на осушенных болотах. Лесоведение, 6, 35-44.
Дорофеев, А. А. и Хохлова, Е. Р. (2016). Ландшафты Тверской области. Тверь: Тверской государственный университет.
Егоров, К. П., Медведева, М. А., Галанина, О. В., Сирин, А. А. (2023a). Изменение облесенности верховых болот за последние десятилетия: некоторые данные (на примере объектов Западно-двинского лесоболотного стационара ИЛАН РАН, Тверская область). В: XII Галкинские чтения. Типы болот регионов России: материалы конференции. СПб.: Изд-во БИН РАН, 71-73.
Егоров, К. П., Медведева, М. А., Галанина, О. В., Сирин, А. А. (2023б). Меняется ли облесенность верховых болот? Методика и предварительные результаты. В: Болота Северной Евразии: биосферные функции, разнообразие и управление. Тезисы докладов международного симпозиума. Петрозаводск: Карельский научный центр РАН, 31-32.
Кац, Н. Я. (1971). Болота земного шара. М.: Наука.
Молчанов, А. А., ред. (1982). Биогеоценологическое изучение болотных лесов в связи с опытной гидромелиорацией. М.: Наука.
Столярова, В. В., Любимов, А. В., Будник, М. Г., Галанина, Ю. А. (2019). Использование вегетационных индексов для оценки состояния растительности по материалам дистанционного зондирования. В: Леса России: политика, промышленность, наука, образование: материалы IV научно-технической конференции. СПб.: Политех-Пресс, 61-63.
Сукачев, В. Н. (1905). О болотной сосне. Лесной журнал СПб., 35 (3), 354-372.
Buschmann, C. and Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation.International Journal of Remote Sensing, 14 (4), 711-722. https://doi.org/10.1080/01431169308904370
Elvidge, C. D. and Lyon, R. J. P. (1985). Influence of rock-soil spectral variation on the assessment of green biomass. Remote Sensing of Environment, 17 (3). https://doi.org/10.1016/0034-4257(85)90099-9
Forgy, E. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768-780.
Gamon, J. A. and Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143 (1), 105-117. https://doi.org/10.1046/j.1469-8137.1999.00424.x
Gunnarsson, U., Sjörs, H., Rydin, H. (2000). Diversity and pH changes after 50 years on the boreal mire Skattlösbergs Stormosse, Central Sweden. Journal of Vegetation Science, 11, 277-286.
Hardisky, M. A., Klemas, V., Smart, R. M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina Alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 48 (1), 77-84.
Huang, S., Tang, L., Hupy, J. P., Wang Y., Shao G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32 (1), 1-6. https://doi.org/10.1007/s11676-020-01155-1
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309.
Huete, A. R., Jackson, R. D., Post, D. F. (1985). Spectral response of a plant canopy with different soil backgrounds. Remote Sensing of Environment, 17 (1), 37-53. https://doi.org/10.1016/0034-4257(85)90111-7
Jordan, C. F. (1969). Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50 (4), 663-666. https://doi.org/10.2307/1936256
Liu, Y., Hatou, K., Aihara, T., Kurose, S., Akiyama, T., Kohno, Y., Lu, S., Omasa, K. (2021). А Robust Vegetation Index Based on Different UAV RGB Images to Estimate SPAD Values of Naked Barley Leaves. Remote Sensing, 13 (4), 686. https://doi.org/10.3390/rs13040686
Masson-Delmotte, V., ed. (2021). IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
rp5.ru (2022). Раcписание погоды [online] Доступно на: https://rp5.ru/[Дата доступа 02.05.2022].
Rubin, J. (1967). Optimal classification into groups: an approach for solving the taxonomy problem. Theoretical Biology, 15, 103-144.
Rydin, H. and Jeglum, J. (2013). The biology of peatlands. 2nd edn. Oxford: Oxford University Press.
Salomonson, V. V. and Appel, I. (2006). Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. IEEE Transactions on Geoscience and Remote Sensing, 44 (7), 1747-1756. https://doi.org/10.1109/TGRS.2006.876029
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.