Laboratory modeling of displacements of rock blocks: Low-amplitude fast movements in experiments on a slider model of fault

Authors

  • Pavel A. Kaznacheev Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation
  • Zinovii-Yurii Ya. Maibuk Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation
  • Alexander V. Ponomarev Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation
  • Andrei V. Patonin Geographical Observatory “Borok” of the Institute of Physics of the Earth of the Russian Academy of Sciences, 142, pos. Borok, Yaroslavskaya obl., 152742, Russian Federation
  • Gennadii A. Sobolev Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation
  • Denis V. Krayushkin Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation; HSE University, 20, ul. Myasnitskaya, Moscow, 101000, Russian Federation
  • Viktor V. Kokh Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 10, ul. Bol’shaya Gruzinskaya, Moscow, 123242, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2024.201

Abstract

Experimental modeling of physical processes associated with faults of the Earth's crust is important for studying earthquakes, rock burst and processes accompanying the deposit development. Laboratory experiments with the study of stick-slip sliding of rock blocks relative to each other on a fault slider model have become widespread. Stick-slip sliding manifests itself in the form of episodes of rapid displacement when load increases to a critical value. The paper investigated the reaction of the model under conditions of different fault humidity after increasing load to a subcritical value. After five days of fault wetting and three series of loads, small and fast displacements (microstick-slips) were detected by signals of a three-component high-frequency accelerometer. Microstick-slips are two orders of magnitude smaller than displacements during episodes of the traditionally observed stick-slip. After time has elapsed since the loading stopped, intervals between microstick-slips increase faster than according to the power law. Magnitude of displacement, amplitude of accelerations and pulses of acoustic emission gradually decreases with reaching the plateau. Possible qualitative mechanisms of the occurrence of microstick-slips are proposed, taking into account the gradual wetting and drying of the fault zone after water injection. The main hypothesis is competition of hardening and softening processes in the fault zone during the removal of water from the fault due to drying and action of capillary forces. Uneven propagation of these processes along the fault can create prerequisites for either small linear displacement on a limited section of the fault, or small displacement with rotation. These displacements manifest themselves as microstick-slips. General slow slippage along the fault and decrease in shear stress leads to decrease in frequency of microstick-slips and in their characteristic parameters.

Keywords:

laboratory modeling, earthquakes, fault, fluid injection, acceleration, stick-slip

Downloads

Download data is not yet available.
 

References

Бернштейн, В. А. (1987). Механогидролитические процессы и прочность твердых тел. Л.: Наука.

Кузьмин, Ю. О. (1996). Современные суперинтенсивные деформации земной поверхности в зонах платформенных разломов. Геологическое изучение и использование недр, 4, 43–53.

Кузьмин, Ю. О. (2018). Современные аномальные деформации земной поверхности в зонах разломов: сдвиг или раздвиг? Геодинамика и тектонофизика, 9 (3), 967–987. https://doi.org/10.5800/GT-2018-9-3-0379

Кочарян, Г. Г. (2016). Геомеханика разломов. М.: ГЕОС.

Соболев, Г. А. и Пономарев, А. В. (2003). Физика землетрясений и предвестники. М.: Наука.

Barenblatt, G. (1959). Concerning equilibrium cracks forming during brittle fracture. The stability of isolated cracks. Relationships with energetic theories. Journal of Applied Mathematics and Mechanics, 23, 1273–1282. https://doi.org/10.1016/0021-8928(59)90130-3

Bolton, D. C., Shreedharan, S., McLaskey, G. C., Rivière, J., Shokouhi, P., Trugman, D. T., Marone, C. (2022). The high-frequency signature of slow and fast laboratory earthquakes. Journal of Geophysical Research: Solid Earth, 127, e2022JB024170. https://doi.org/10.1029/2022JB024170

Dieterich, J. H. (1972). Time‐dependent friction in rocks. Journal of Geophysical Research, 77, 3690–3697.

Gridin, G. A., Kocharyan, G. G., Morozova, K. G., Novikova, E. V., Ostapchuk, A. A., Pavlov, D. V. (2023). Evolution of Sliding Along a Heterogeneous Fault. A Large-Scale Laboratory Experiment. Izvestiya, Physics of the Solid Earth, 59 (3), 460–467.

Hill, D. P. and Prejean, S. G. (2009). Dynamic Triggering. In: Kanamori H., ed., Geophysical treatise, earthquake seismology. Amsterdam: Elsevier, 257–291.

Kanamori, H. and Stewart, G. S. (1978). Seismological aspects of the Guatemala Earthquake of February 4, 1976. Journal of Geophysical Research, 83, 3427–3434.

Kocharyan, G. G. and Ostapchuk, A. A. (2011). Variations in rupture zone stiffness during a seismic cycle. Doklady Earth Sciences, 441 (1), 1591–1594. https://doi.org/10.1134/S1028334X11110250

Kuzmin, Yu. O. (2004). Recent geodynamics of fault zones. Izvestiya, Physics of the Solid Earth, 40 (10), 868–882.

Leeman, J. R., Saffer, D. M., Scuderi, M. M., Marone, C. (2016). Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nature Communications, 7 (1), 1–6. https://doi.org/10.1038/ncomms11104

Ohnaka, M. (2013). The physics of rock failure and earthquakes. Cambridge: Cambridge University Press.

Sadovskiy, M. A., Kocharyan, G. G., Rodionov, V. N. (1988). Mechanics of a rock body with block structure. Transactions (Doklady) of the USSR Academy of Sciences. Earth Science Sections, 302 (5), 20–22.

Scholz, C. (2019). The Mechanics of Earthquakes and Faulting. 3rd ed. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316681473

Sobolev, G. A., Ponomarev A. V., Maibuk Y. Y. (2016). Initiation of unstable slips–microearthquakes by elastic impulses. Izvestiya, Physics of the Solid Earth, 52 (5), 674–691. https://doi.org/10.1134/S106935131605013X

Veselovskiy, R. V., Dubinya, N. V., Ponomarev, A. V., Fokin, I. V., Patonin, A. V., Pasenko, A. M., Fetisova, A. M., Matveev, M. A., Afinogenova, N. A., Rud’ko, D. V., Chistyakova, A. V. (2022). Shared research facilities “Petrophysics, geomechanics and paleomagnetism” of the Schmidt Institute of Physics of the Earth RAS. Geodynamics & Tectonophysics, 13 (2), 0579. https://doi.org/10.5800/GT-2022-13-2-0579

Zeigarnik, V. A., Novikov, V. A., Bogomolov, L. M. (2022). Electromagnetic Earthquake Triggering: Field Observations, Laboratory Experiments, and Physical Mechanisms — A Review. Physics of the Solid Earth, 58 (1), 30–58. https://doi.org/10.1134/S1069351322010104

Published

2024-07-08

How to Cite

Kaznacheev, P. A. (2024) “Laboratory modeling of displacements of rock blocks: Low-amplitude fast movements in experiments on a slider model of fault”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.201.

Issue

Section

Articles