Lamprophyres of the Alexandrinsky ore area (Southern Urals): petrogenesis and geodynamic conditions of formation

Authors

  • Timofey N. Surin A.P.Karpinsky Russian Geological Research Institute, Russian Federation, 199106, St. Petersburg, Sredny pr. V.O., 74

DOI:

https://doi.org/10.21638/spbu07.2024.409

Abstract

The material composition, petrographic and mineralogical features of dyke lamprophyres in the sulfide-bearing Alexandrinsky ore area of the Southern Urals are described. The previously published isotope-geochronological data on lamprophyres of the Southern Urals are summarized, showing more ancient (304-308 million years) their age compared with lamproitoids in the Magnitogorsk iron ore area developed (197-240 million years). It is shown that the rocks are represented by a continuous petrogenetic series: monchikites – (camptonites, sannaites) – minettes – kersantites. Intensive carbonatization of most rock varieties was pointed out. It is concluded that the compositions of primary magmatic clinopyroxenes that form two distinct generations evolve according to two trends, each of them corresponds to its own generation. The composition of the first generation varies in the range from Ca40Mg53Fe7 to Ca48Mg45Fe7, the composition of the second generation-from Ca47Mg50Fe3 to Ca46Mg35Fe19. Petrogeochemical features of rocks are studied. According to their chemistry, they are divided into three groups: ultrabasic (monchikites, rare), basic (most of the analyzed rocks) and medium (kersantites). The average compositions of the selected groups are counted, the features of their normative composition are described, and the geochemical characteristics are given. It is concluded that they differ significantly from intraplate structures and have a certain similarity with collision-type rock formations. A possible mechanism of lamprophyre petrogenesis is reconstructed. It is confirmed that the primary lamprophyric melt was a product of partial melting of a metasomatically enriched mantle substrate represented by phlogopite-bearing harzburgites or lherzolites. Crystallization of the melt at the initial stages occurred according to the scheme corresponding to the experimentally established phase relationships in the presence of an aqueous fluid, and at the later stages – in the presence of an aqueous-carbon dioxide fluid. Change of composition of the fluid component due to the delay of the melt in the transitional chamber , it leads to a drastic change in phase system configuration due to sudden expansion of orthopyroxene crystallization field and termination of crystallization of phlogopite and accessory oxide phases. The geodynamic formation environment of dikes is clarified and their geochemical similarity to "Autonomous" lamprophyres of collision regions is revealed. It is proposed to establish a new lamprophyre complex.

Keywords:

lamprophyre, Southern Urals, petrogenesis, geodynamic setting

Downloads

Download data is not yet available.
 

References

Богатиков, О. А., ред. (2009). Петрографический кодекс России. 3-е изд. СПб.: ВСЕГЕИ.

Богатиков, О. А., Петров, В. П., Петров, Р. П., ред. (1981). Петрографический словарь. М.: Недра.

Богатиков, О. А., Рябчиков, И. Д., Кононова, В. А., Махоткин, И. Л., Новогородова, М. И., Соловова, И. П., Галускин, И. В., Ганеев, Н. И., Гирнис, А. В., Еремеев, Н. В., Когарко, Л. Н., Кудрявцева, Г. П., Михайличенко, О. А., Наумов, В. Б., Сапожникова, Е. Н. (1991). Лампроиты. М.: Наука.

Васюкова, Е. А., Изох, А. Э., Борисенко, А. С., Павлова, Г. Г., Сухоруков, В. П., Чан Туан Ань (2011). Петрология и возрастные рубежи раннемезозойских лампрофиров Горного Алтая. Геология и геофизика, 52 (12), 2001–2021.

Горожанин, В. М. (1995). Рубидий-стронциевый изотопный метод в решении проблем геологии Южного Урала. Автореф. дис. … канд. геол.-минерал. наук. Екатеринбург.

Ефремова, С. В. и Стафеев, К. Г. (1985). Петрохимические методы исследования горных пород. М.: Недра.

Каминский, Ф. В., Романько, Е. Ф., Колесников, С. К., Салхи, М. (1992). Лампроиты Северного Алжира. Известия РАН. Серия. Геология, 10, 56–71.

Краснобаев, А. А., Кузнецов, Г. П., Калеганов, В. А. (1993). Состав и возраст лампроитов куйбасовского комплекса. В: Ежегодник — 1992. Екатеринбург: Изд-во ИГГ УрО РАН, 35–39.

Лукьянова, Л. И., Мареичев, А. М., Мащак, И. М., Мосейчук, В. М. (1992). Первые находки лампроитового магматизма на Южном Урале. Доклады РАН, 324 (6), 1260–1264.

Мосейчук, В. М., Яркова, А. В., Михайлов, И. Г., Кашина, Л. В., Сурин, Т. Н., Плохих, Н. А., Цин, Д. Ф. (2017). Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Южно-Уральская. Лист N-40-XXIV. Объяснительная записка. М.: ВСЕГЕИ.

Первов, В. П. и Прокин, В. А. (1985). Медноколчеданные месторождения Урала: геологические условия размещения. Свердловск: УНЦ АН СССР.

Прибавкин, С. В., Ронкин, Ю. Л., Травин, А. В. (2007). Новые данные о возрасте лампроит-лампрофирового магматизма Урала. Доклады РАН, 412 (5), 682–684.

Пучков, В. Н. (2010). Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис.

Рябчиков, И. Д., Орлова, Г. П., Трубкин, Н. В., Каленчук, Г. Е. (1989). Первичные и закалочные минералы в системе «перидотит — H2O — CO2» при 20 кбар. Записки ВМО, 118 (6), 1–11.

Салихов, Д. Н., Холоднов, В. В., Пучков, В. Н., Рахимов, И. Р. (2019). Субдукция, коллизия и плюмы в эпоху позднепалеозойского магматизма Магнитогорской зоны Южного Урала. Литосфера, 19 (2), 191–208. http://doi.org/10.24930/1681-9004-2019-19-2-191-208

Серавкин, И. Б., Знаменский, С. Е., Косарев, А. М., Знаменская, Н. М., Минибаева, К. Р., Родичева, З. И., Шафигуллина, Г. Т. (2008). Палеовулканизм и колчеданное оруденение Александринского рудного района (Южный Урал). В: Геологический сборник № 7. Юбилейный выпуск. ИГ УНЦ РАН. Уфа: ДизайнПолиграфСервис, 88–118.

Сурин, Т. Н. (1999). Триасовые лампроитоиды и лампрофиры (калымбаевский комплекс) Восточно-Магнитогорской зоны Южного Урала: минералогия, геохимия и петрогенезис. Уфа: Изд-во ИГ УНЦ РАН.

Сурин, Т. Н. (2020a). Лампроитоиды Магнитогорской мегазоны (Южный Урал): петролого-геохимические особенности и геодинамическая обстановка формирования. Вестник Санкт-Петербургского университета. Науки о Земле, 65 (1), 194–217. http://doi.org/10.21638/spbu07/2020/110

Сурин, Т. Н. (2020b). Раннепермские гранитоиды Восточно-Магнитогорской зоны (Южный Урал): петрология, геохимия и геодинамическая обстановка формирования. Известия УГГУ, 57 (1), 47–62. http://doi.org/10.21440/2307-2091-2020-1-47-62

Сурин, Т. Н. и Мосейчук, В. М. (1995). Геодинамика развития Магнитогорского палеовулканического пояса. Вестник Санкт-Петербургского университета. Серия 7. Геология. География, 4 (28), 11–18.

Тесалина, С. Г., Масленников, В. В., Сурин, Т. Н. (1998). Александринское медно-цинковоколчеданное месторождение: Восточно-Магнитогорская палеоостровная дуга, Урал. Миасс: ИМин УрО РАН.

Хомичёв, В. Л. (1995). Дайки второго этапа: факты, аргументы, петрогенетические следствия. Записки ВМО, 74 (3), 108–118.

Шинкарёв, Н. Ф. и Иваников, В. В. (1983). Физико-химическая петрология изверженных пород. Л.: Недра.

Эдгар, Д. и Арима, М. (1984). Экспериментальное изучение калиевого метасоматоза с использованием модели пиролитовой мантии и его значение для выявления генезиса высококалиевых магм. В: 27-й МГК. Доклады. Т. 9. Петрология. М.: Наука, 246–258.

Aghazadeh, M., Prelevic, D., Badrzadeh, Z., Braschi, E., Bogard, P. V. D., Conticelli, S. (2015). Geochemistry, Sr-Nd-Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: Implications for mantle wedge heterogeneity in a palaeo-subduction zone. Lithos, 216/217, 352–369. http://doi.org/10.1016/j.lithos.2015.01.001

Anderson, D. L. (1982). Isotopic evolution of the mantle: the role of magma mixing. Earth and Planetary Science Letters, 57 (1), 1–12.

Ayer, J. A., Concencao, R. V., Ketchum, J. W. F., Sage, R. P., Semenina, L., Wyman, D. A. (2003). The timing and petrogenesis of diamondiferous lamprophyres in the Michipicoten and Abitibi Grenstone belts. In: Summary of Field Work and Other Activities 2003. Ontario Geological Survey, Open File Report 6120, 10-1–10-9.

Barton, M. and Hamilton, D. L. (1982). Water — undersaturated melting experiments bearing upon the origin of potassium-rich magmas. Mineralogical Magazine, 45 (337), 267–278. http://doi.org/10.1180/minmag.1982.045.337.30

Buzzi, L., Gaggero, L., Grozdanov, L., Yanov, S., Slejko, F. (2010). High-Mg potassic rocks in the Balkan segment of the Variscan belt (Bulgaria): implications for the genesis of orogenic lamproite magmas. Geological Magazine, 147 (3), 434–450. http://doi.org/10.1017/S0016756809990550

De Stefano, A., Lefevre, N., Kopylova, M. (2006). Enigmatic diamonds in Archean calc-alkaline lamprophyres of Wawa Southern Ontario, Canada. Contributions to Mineralogy and Petrology, 151, 158–173. http://doi.org/10.1007/S00410-005-0052-5

Eggler, D. H. (1975). Peridotite — carbonate relations in the system CaO-MgO-SiO2-CO2. In: Carnegie Institute Washington Yearbook, 468–474.

Evensen, N. M., Hamilton, P. J., O’Nions, R. K. (1978). Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica. Acta, 42 (8), 1199–1212. http://doi.org/10.1016/-7037(78)90114-X

Foley, S. (1992). Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos, 28, 187–204. http://doi.org/10.1016/0024-4937(92)90006-K

Gillespie, M. R. and Styles, M. T. (1999). Research report № RR 99-06. BGS Rock Classification Scheme. Vol. 1. Classification of igneous rocks. Nottingham: NERC.

Gülmez, F., Genç, C., Prelevic, D., Tuysür, O., Karacik, Z., Roden, M. F., Billor, Z. (2016). Ultrapotassic Volcanism from the Waning Stage of the Neotethyan Subduction: a Key Study from the Yzmir-Ankara-Erzincan Suture Belt, Central Northern Turkey. Journal of Petrology, 57 (3), 561–593. http://doi.org/10.1093/petrology/egw021

Imaoka, T., Kawabata, H., Nayashima, M., Nakashima, K., Kamei, K., Yagi, K., Itaya, T., Kiji, M. (2017). Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zone. Lithos, 290, 18–33. http://doi.org/10.1016/j.lithos.2017.07.023

Jiang, Y.-H., Jiang, S.-Y., Ling, H.-F., Ni, P. (2010). Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liadong Peninsula, NE China. Mineralogy and Petrology, 100, 127–151. http://doi.org/10.1007/s00710-010-0124-8

Karsli, O., Dokuz, A., Kaliwoda, M., Uysal, I., Aydin, F., Kandemir, R., Fehr, K.-T. (2014). Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment. Lithos, 196/197, 181–197. http://doi.org/10.1016/j.lithos.2014.02.022

Le Maitre, R. W., ed. (2002). Igneous Rocks. A Classification and Glossary of Terms. Recommendation of the International Union of Geological Science. Subcommission on the Systematics of Igneous Rocks. Cambridge New York; Melbourne; Madrid; Cape Town; Singapore; São Paulo: Cambridge University Press.

Lefevre, N., Kopylova, M., Kivi, K. (2005). Archean calc-alkaline lamprophyres of Wawa Ontario, Canada: unconventional diamondiferous volcanoclastic rocks. Precambrian Research, 138, 57–87. http://doi.org/10.1016/j.precamres.2005.04.005

Lu, Y.-J., McCuaig, C., Li, Z.-X., Jourdan, F., Hart, C. J. R., Hou, Z.-Q., Tang, S.-H. (2015). Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle sources and tectonic implications. Lithos, 233, 139–161. http://doi.org/10.1016/j.lithos.2015.02.003.

Mercier, J. (1980). Single-pyroxene thermobarometry. Tectonophysics, 70, 1–37. http://doi.org/10.1016/0040-1951(80)90019-0

Mitchell, R. H. (1994). The lamprophyre facies. Mineralogy and Petrology, 51, 137–146. http://doi.org/10.1007/BF001159724

Moayyed, M., Moazzen, M., Calagari, A. A., Jahangiri, A., Modjarad, M. (2008). Geochemistry and petrogenesis of lamprophyric dykes and the associated rocks from Eslami peninsula, NW Iran: Implications for deep-mantle metasomatism. Chemie der Erde, 68, 141–154. http://doi.org/10.1016/j.chemer.2006.04.002

Moghadam, H. S., Gorbani, G., Khedr, M. Z., Fazlnia, N., Chiaradia, M., Eyuboglu, G., Santosh, M., Francisco, C. G., Martinez, M. L., Gourgaud, A., Arai, A. (2014). Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Research, 26, 1028–1050. http://doi.org/10.1016/j.gr.2013.09.015

Nasir, S. (2016). Petrology of Late Jurassic allochtonous ultramafic lamprophyres within the Batain Nappes, northeastern Oman. International Geology Review, 58, 913–928. http://doi.org/10.1080/00206814.2015.1136571

Orozco-Garza, A., Dostal, J., Keppie, J. D., Paz-Moreno, F. A. (2013). Mid-Tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction — modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone. Tectonophysics, 590, 59–71. http://doi.org/10.1016/j.tecto.2013.01.013

Pandey, A., Rao, C., Chakrabarti, R., Pankaj, P., Pandit, D., Pandey, R., Saho, S. (2018). Post-collisional calc-alkaline lamprophyres from the Kadiri greenstone belt: Evidence for the Neoarchean convergence-related evolution of the Eastern Dharwar Craton and its schist belts. Lithos, 320/321, 105–117. http://doi.org/10.1016/j.lithos.2018.09.005

Pandey, A., Rao, N. V. C., Chakrabarti, R., Pandit, D., Pankaj, P., Kumaz, A., Saho, S. (2017). Petrogenesis of a mezoproterozoic shoshonite lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source. Lithos, 292/293, 218–233. http://doi.org/10.1016/j.lithos.2017.09.001

Pe-Piper, G., Piper, D. J. W., Papoutsa, A. (2018). Mid-Carboniferous lamprophyres, Cobequid Fault Zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization. Lithos, 296–299, 316–331. http://doi.org/10.1016/j.lithos.2017.11.015

Phani, P. R. C., Raju, V. V. N., Srinivas, M. (2018). Petrological and Geochemical Characteristics of a shoshonitic lamprophyre, Sivarampet, Wajrakarur kimberlite Field, Southern India. IOSR Journal of Applied Geology and Geophysics, 6 (2), 55–69. http://doi.org/10.9790/0990-0602015569

Plá Cid, J., Rios, D. C., Concenção, H. (2006). Petrogenesis of mica-amphibole-bearing lamprophyres associated with the Paleoproterozoic Morro do Afonso syenite, eastern Brasil. Journal of South American Earth Sciences, 22, 98–115. http://doi.org/10.1016/j.jsames.2006.08.002

Raeisi, D., Gholoizade, K., Nayebi, N., Babazadeh, S., Nejadhadad, M. (2019). Geochemistry and mineral composition of lamprophyre dikes, central Iran: implications for petrogenesis and mantle evolution. Journal of Earth System Science, 128, 74. https://doi.org/10.1007/s12040-019-1110-0

Rock, N. M. S. (1991). Lamprophyres. Glasgow: Blackie.

Rock, N. M. S., Gaskarth, J. W., Rundle, C. C. (1986). Late Caledonian Dyke-Swarms in Southern Scotland: A Regional Zone of Primitive K-Rich Lamprophyres and Associated Vents. Journal of Geology, 94 (4), 505–522. https://doi.org/10.1086/629054

Rosenbusch, H. (1908). Microskopische physiographie der Mineralien und Gesteine. Hand II. Massige Gesteine. Stuttgart: E. Schweizerbartsche Verlagshandlung (E. Nägele).

Ryabchikov, I. D. and Boettcher, A. L. (1980). Experimental evidence at high pressure for potassic metasomatism in the mantle of the Earth. American Mineralogist, 65 (9/10), 915–919.

Semiz, B., Çoban, H., Roden, M. F., Özpinar, Y., Flower, M. F. J., McGregor, H. (2012). Mineral composition in cognate inclusions in Late Miocene — Early Pliocene potassic lamprophyres with affinities to lamproites from the Denizli region, Western Anatolia, Turkey: Implications for uppermost mantle processes in a back-arc setting. Lithos, 134/135, 253–272. http://doi.org/10.1016/j.lithos.2012.01.005

Shand, P., Gaskarth, I. W., Thirwall, M. F., Rock, N. M. S. (1994). Late Caledonian dyke swarms of South-Eastern Scotland. Mineralogy and Petrology, 51, 277–298. http://doi.org/10.1007/BF01159733

Szabo, C., Kubovics, I., Molnár, Z. (1993). Alkaline lamprophyre and Related Dyke Rocks in NE Transdanubia, Hungary: The Alcsutdoboz-2 (AD-2) Borehole. Mineralogy and Petrology, 47, 127–148.

Tappe, S., Foley, S. F., Jenner, G. A., Kjarsgaard, B. A. (2005). Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology, 46 (9), 1893–1900. http://doi.org/10.1093/petrology/egi039

Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S., Scott-Smith, B. H. (1996). Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic and leucitic rocks. Canadian Mineralogist, 34, 175–186.

Yoder, H. S. (1986). Potassium-rich Rocks: Phase Analysis and Heteromorphic Relations. Journal of Petrology, 27 (5), 1215–1228. http://doi.org/10.1093/petrology/27.5.1215

Published

2024-12-02

How to Cite

Surin, T. N. (2024) “Lamprophyres of the Alexandrinsky ore area (Southern Urals): petrogenesis and geodynamic conditions of formation”, Vestnik of Saint Petersburg University. Earth Sciences, 69(4). doi: 10.21638/spbu07.2024.409.

Issue

Section

Articles