The structure of paleoearthquake surface ruptures along the Kubadru Fault (Gorny Altai): Ground-penetrating radar evidence
DOI:
https://doi.org/10.21638/spbu07.2024.205Abstract
The Gorny Altai is part of the system of intracontinental Cenozoic orogens that originated from the Eurasia-India collision. There is crustal contraction, which is followed by numerous earthquakes, and the highest concentration of earthquake sources is observed in the south-eastern part of the region. The system of paleoearthquake surface ruptures in the Kubadru Fault Zone was studied at three representative sites using the GPR method in conditions of weakly consolidated coarse clastic deposits in the upper part of the section and permafrost development. UAV aerial photography and trenching supported the geophysical studies. By using a 250 MHz antenna, we determined morphological parameters of paleoseismic scarps with high accuracy and learned about the fault's deep structures up to 8 m. A 100 MHz antenna provided the same information up to 10 m. Identifying active faults by looking for reflection discontinuities and chaotic reflections is not enough. Additional features from GPR datasets are necessary to detail the internal structure of the seismogenic fault zone. These are subvertical high-amplitude zones that can be traced to depths of up to 6-8 metres. The presence of such zones can be explained by the fracturing of rocks and sediments, their waterlogging, the development of processes of seismogenic fluidization of soils. Deposits of colluvial wedges are distinguished on GPR profiles as depressions filled with layered deposits, with a series of parallel inclined reflectors. A 3D GPR survey helped identify paleofaults over a larger area and eliminated errors on individual profiles. The permafrost table sharply limited the depth of sounding. A low frequency of the spectrum, a smooth decrease in amplitudes to minimum values characterized rocks and sediments in the frozen state. Shallow reflections on the GPR profiles correspond to the lithological complexes observed in the trenches. The acquired findings demonstrate the importance of employing geophysics in investigating the surface ruptures of paleoearthquakes both at the stage of determining the location and kinematics of seismogenic ruptures prior to trenching, and at the stage of substantiating the history of the formation of faults.
Keywords:
surface rupture, paleoearthquake, ground penetrating radar, Kubadru Fault, Gorny Altai
Downloads
References
Anchuela, Ó. P., Lafuente, P., Arlegui, L., Liesa, C. L., Simón, J. L. (2016). Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain). International Journal of Earth Sciences, 105, 2221–2239. https://doi.org/10.1007/s00531-015-1283-y
Bricheva, S. S., Deev, E. V., Dubrovin, I. O., Doroshenkov, M. M., Entin, A. L., Panin, A. V., (2021a). Ground-penetrating radar evidence of faulting in unconsolidated coarse sediments. Conference Proceedings, NSG2021 27th European Meeting of Environmental and Engineering Geophysics, 2021, 1–5. https://doi.org/10.3997/2214-4609.202120241
Bricheva, S. S., Dubrovin, I. O., Lunina, O. V., Denisenko, I. A., Matasov, V. M., Turova, I. V., Entin, A. L., Panin, A. V., Deev, E. V. (2021b). Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone. Near Surface Geophysics, 19, 261–277. https://doi.org/10.1002/nsg.12153
Chwatal, W., Decker, K., Roch, K. (2005). Mapping of active Capable Faults by high-resolution geophysical methods: examples from the Central Vienna Basin. Austrian Journal of Earth Sciences, 97, 52–59.
Deev, E., Borodovskiy, A., Entin, A. (2023a). Earthquake-induced deformation at archaeological sites in southeastern Gorny Altai (Siberia, Russia). Archaeological Research in Asia, 34, 100431. https://doi.org/10.1016/j.ara.2023.100431
Deev, E., Dublyansky, Y., Kokh, S., Scholz, D., Rusanov, G., Sokol, E., Khvorov, P., Reutsky, V., Panin, A. (2023b). Large Holocene paleoseismic events and synchronized travertine formation: a case study of the Kurai Fault Zone (Gorny Altai, Russia). International Geology Review, 65 (15), 2426–2446, https://doi.org/10.1080/00206814.2022.2145510
Deev, E. V. (2019). Localization zones of ancient and historical earthquakes in Gorny Altai. Izvestiya, Physics of the Solid Earth, 55 (3), 451–470. https://doi.org/10.1134/S1069351319030030
Deev, E. V., Krzhivoblotskaya, V. E., Borodovskiy, A. P., Entin, A. L. (2022a). Active faults and late Holocene surface rupturing earthquakes in the Kokorya Basin (Gorny Altai, Russia). Doklady Earth Sciences, 506 (1), 666–670. https://doi.org/10.1134/S1028334X22700039
Deev, E. V., Turova, I. V., Borodovskiy, A. P., Zolnikov, I. D., Oleszczak, L. (2017). Unknown large ancient earthquakes along the Kurai fault zone (Gorny Altai): New results of paleoseismological and archaeoseismological studies. International Geology Review, 59 (3), 293–310. https://doi.org/10.1080/00206814.2016.1258675
Deev, E. V., Zolnikov, I. D., Kurbanov, R. N., Panin, A. V., Murray, A., Korzhenkov, A. M., Turova, I. V., Pozdnyakova, N. I., Vasiliev, A. V. (2022b). OSL dating of the Sukor earthquake-induced rockslide in Gorny Altai: paleoseismological and paleogeographic implications. Russian Geology and Geophysics, 63 (6), 743–754. https://doi.org/10.2113/RGG20204300
Deev, E. V., Panin, A. V., Solomina, O. N., Bricheva, S. S., Borodovskiy, A. P., Entin, A. L., Kurbanov, R. N. (2024) Large paleoearthquakes and Holocene faulting in the Southeastern Gorny Altai: implications for ongoing crustal shortening in Central Asia. International Geology Review, https://doi.org/10.1080/00206814.2024.2333000
Emanov, A. F., Emanov, A. A., Leskova, E. V., Kolesnikov, Y. I., Yankaitis, V. V., Filina, A. G. (2012). The Ms = 7.0 Uureg Nuur earthquake of 15.05.1970 (Mongolian Altai): The aftershock process and current seismicity in the epicentral area. Russian Geology and Geophysics, 53 (10), 1090–1099. https://doi.org/10.1016/j.rgg.2012.08.009
Ercoli, M., Cirillo, D., Pauselli, C., Jol, H. M., Brozzetti, F. (2021). Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, Southern Apennines, Italy». Solid Earth, 12, 2573–2596. https://doi.org/10.5194/se-12-2573-2021
Ercoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., Barchi, M. R. (2020). Using seismic attributes in seismotectonic research: An application to the Norcia Mw=6.5 earthquake (30 October 2016) in Central Italy. Solid Earth, 11, 329–348. https://doi.org/10.5194/se-11-329-2020
Lunina, O. V., Denisenko, I. A., Gladkov, A. A., Braga, C. (2023). Enigmatic surface ruptures at cape Rytyi and surroundings, Baikal Rift, Siberia: seismic hazard implication. Quaternary, 6, 22. https://doi.org/10.3390/quat6010022
Lunina, O. V., Gladkov, A. S., Afonkin, A. M., Serebryakov, E. V. (2016). Deformation style in the damage zone of the Mondy fault: GPR evidence (Tunka basin, southern East Siberia). Russian Geology and Geophysics, 57 (9), 1269–1282. https://doi.org/10.1016/j.rgg.2016.08.012
Lunina, O. V., Gladkov, A. S., Gladkov, A. A. (2019). Surface and shallow subsurface structure of the Middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains from geomorphological and ground-penetrating radar investigations. Geomorphology, 326, 54–67. https://doi.org/10.1016/j.geomorph.2018.03.009
McCalpin, J. P., ed. (1996). Paleoseismology. San Diego: Academic Press.
McClymont, A. F., Green, A. G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D. C., Pettinga, J., Campbell, J., Langridge, R. (2008). Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics, 73, B11–23. https://doi.org/10.1190/1.2825408
Reiss, S., Reicherter, K. R., Reuther, C. (2003). Visualization and characterization of active normal faults and associated sediments by high-resolution GPR. Geological Society, London, Special Publications, 211, 247–55. https://doi.org/10.1144/GSL.SP.2001.211.01.20
Roberts, G. P., Raithatha, B., Sileo, G., Pizzi, A., Pucci, S., Walker, J.F., Wilkinson, M., McCaffrey, K., Phillips, R. J., Michetti, A. M., Guerrieri, L., Blumetti, A. M., Vittori, E., Cowie, P., Sammonds, P., Galli, P., Boncio, P., Bristow. C., Walters, R. (2010). Shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophysical Journal International, 183, 774–90. https://doi.org/10.1111/j.1365-246X.2010.04713.x
Tronicke, J., Villamor, P., Green, A. G. (2006). Detailed shallow geometry and vertical displacement estimates of the Maleme Fault Zone, New Zealand, using 2D and 3D georadar. Near Surface Geophysics, 4, 155–161. https://doi.org/10.3997/1873-0604.2005041
Turova, I., Deev, E., Pozdnyakova, N., Entin, A., Nevedrova, N., Shaparenko, I., Bricheva, S., Korzhenkov, A., Kurbanov, R., Panin, A. (2020). Surface-rupturing paleoearthquakes in the Kurai Fault Zone (Gorny Altai, Russia): Trenching and geophysical evidence. Journal of Asian Earth Sciences, 197, 104399. https://doi.org/10.1016/j.jseaes.2020.104399
Zhang, D., Li, J., Liu, S., Wang, G. (2019). Multi-frequencies GPR measurements for delineating the shallow subsurface features of the Yushu strike slip fault». Acta Geophysica, 67, 501–515. https://doi.org/10.1007/s11600-019-00271-9
Zhang, D., Li, J., Wu, Z., Ren, L. (2023). Reconstructing the geometry of the Yushu Fault in the Tibetan Plateau using TLS, GPR and trenching. Remote Sensing, 15 (8), 1994. https://doi.org/10.3390/rs15081994
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.