The structure of paleoearthquake surface ruptures along the Kubadru Fault (Gorny Altai): Ground-penetrating radar evidence

Authors

  • Svetlana S. Bricheva Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation; Institute of Geography of the Russian Academy of Sciences, 29, Staromonetny per., Moscow, 119017, Russian Federation; Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation
  • Evgeny V. Deev Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation; Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation
  • Oleg V. Safronov Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation; Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, 3, pr. Akademika Koptuga, Novosibirsk, 630090, Russian Federation
  • Andrey L. Entin Novosibirsk State University, 2, ul. Pirogova, Novosibirsk, 630090, Russian Federation; Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation

DOI:

https://doi.org/10.21638/spbu07.2024.205

Abstract

The Gorny Altai is part of the system of intracontinental Cenozoic orogens that originated from the Eurasia-India collision. There is crustal contraction, which is followed by numerous earthquakes, and the highest concentration of earthquake sources is observed in the south-eastern part of the region. The system of paleoearthquake surface ruptures in the Kubadru Fault Zone was studied at three representative sites using the GPR method in conditions of weakly consolidated coarse clastic deposits in the upper part of the section and permafrost development. UAV aerial photography and trenching supported the geophysical studies. By using a 250 MHz antenna, we determined morphological parameters of paleoseismic scarps with high accuracy and learned about the fault's deep structures up to 8 m. A 100 MHz antenna provided the same information up to 10 m. Identifying active faults by looking for reflection discontinuities and chaotic reflections is not enough. Additional features from GPR datasets are necessary to detail the internal structure of the seismogenic fault zone. These are subvertical high-amplitude zones that can be traced to depths of up to 6-8 metres. The presence of such zones can be explained by the fracturing of rocks and sediments, their waterlogging, the development of processes of seismogenic fluidization of soils. Deposits of colluvial wedges are distinguished on GPR profiles as depressions filled with layered deposits, with a series of parallel inclined reflectors. A 3D GPR survey helped identify paleofaults over a larger area and eliminated errors on individual profiles. The permafrost table sharply limited the depth of sounding. A low frequency of the spectrum, a smooth decrease in amplitudes to minimum values characterized rocks and sediments in the frozen state. Shallow reflections on the GPR profiles correspond to the lithological complexes observed in the trenches. The acquired findings demonstrate the importance of employing geophysics in investigating the surface ruptures of paleoearthquakes both at the stage of determining the location and kinematics of seismogenic ruptures prior to trenching, and at the stage of substantiating the history of the formation of faults.

Keywords:

surface rupture, paleoearthquake, ground penetrating radar, Kubadru Fault, Gorny Altai

Downloads

Download data is not yet available.
 

References

Anchuela, Ó. P., Lafuente, P., Arlegui, L., Liesa, C. L., Simón, J. L. (2016). Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain). International Journal of Earth Sciences, 105, 2221–2239. https://doi.org/10.1007/s00531-015-1283-y

Bricheva, S. S., Deev, E. V., Dubrovin, I. O., Doroshenkov, M. M., Entin, A. L., Panin, A. V., (2021a). Ground-penetrating radar evidence of faulting in unconsolidated coarse sediments. Conference Proceedings, NSG2021 27th European Meeting of Environmental and Engineering Geophysics, 2021, 1–5. https://doi.org/10.3997/2214-4609.202120241

Bricheva, S. S., Dubrovin, I. O., Lunina, O. V., Denisenko, I. A., Matasov, V. M., Turova, I. V., Entin, A. L., Panin, A. V., Deev, E. V. (2021b). Numerical simulation of ground‐penetrating radar data for studying the geometry of fault zone. Near Surface Geophysics, 19, 261–277. https://doi.org/10.1002/nsg.12153

Chwatal, W., Decker, K., Roch, K. (2005). Mapping of active Capable Faults by high-resolution geophysical methods: examples from the Central Vienna Basin. Austrian Journal of Earth Sciences, 97, 52–59.

Deev, E., Borodovskiy, A., Entin, A. (2023a). Earthquake-induced deformation at archaeological sites in southeastern Gorny Altai (Siberia, Russia). Archaeological Research in Asia, 34, 100431. https://doi.org/10.1016/j.ara.2023.100431

Deev, E., Dublyansky, Y., Kokh, S., Scholz, D., Rusanov, G., Sokol, E., Khvorov, P., Reutsky, V., Panin, A. (2023b). Large Holocene paleoseismic events and synchronized travertine formation: a case study of the Kurai Fault Zone (Gorny Altai, Russia). International Geology Review, 65 (15), 2426–2446, https://doi.org/10.1080/00206814.2022.2145510

Deev, E. V. (2019). Localization zones of ancient and historical earthquakes in Gorny Altai. Izvestiya, Physics of the Solid Earth, 55 (3), 451–470. https://doi.org/10.1134/S1069351319030030

Deev, E. V., Krzhivoblotskaya, V. E., Borodovskiy, A. P., Entin, A. L. (2022a). Active faults and late Holocene surface rupturing earthquakes in the Kokorya Basin (Gorny Altai, Russia). Doklady Earth Sciences, 506 (1), 666–670. https://doi.org/10.1134/S1028334X22700039

Deev, E. V., Turova, I. V., Borodovskiy, A. P., Zolnikov, I. D., Oleszczak, L. (2017). Unknown large ancient earthquakes along the Kurai fault zone (Gorny Altai): New results of paleoseismological and archaeoseismological studies. International Geology Review, 59 (3), 293–310. https://doi.org/10.1080/00206814.2016.1258675

Deev, E. V., Zolnikov, I. D., Kurbanov, R. N., Panin, A. V., Murray, A., Korzhenkov, A. M., Turova, I. V., Pozdnyakova, N. I., Vasiliev, A. V. (2022b). OSL dating of the Sukor earthquake-induced rockslide in Gorny Altai: paleoseismological and paleogeographic implications. Russian Geology and Geophysics, 63 (6), 743–754. https://doi.org/10.2113/RGG20204300

Deev, E. V., Panin, A. V., Solomina, O. N., Bricheva, S. S., Borodovskiy, A. P., Entin, A. L., Kurbanov, R. N. (2024) Large paleoearthquakes and Holocene faulting in the Southeastern Gorny Altai: implications for ongoing crustal shortening in Central Asia. International Geology Review, https://doi.org/10.1080/00206814.2024.2333000

Emanov, A. F., Emanov, A. A., Leskova, E. V., Kolesnikov, Y. I., Yankaitis, V. V., Filina, A. G. (2012). The Ms = 7.0 Uureg Nuur earthquake of 15.05.1970 (Mongolian Altai): The aftershock process and current seismicity in the epicentral area. Russian Geology and Geophysics, 53 (10), 1090–1099. https://doi.org/10.1016/j.rgg.2012.08.009

Ercoli, M., Cirillo, D., Pauselli, C., Jol, H. M., Brozzetti, F. (2021). Ground-penetrating radar signature of Quaternary faulting: a study from the Mt. Pollino region, Southern Apennines, Italy». Solid Earth, 12, 2573–2596. https://doi.org/10.5194/se-12-2573-2021

Ercoli, M., Forte, E., Porreca, M., Carbonell, R., Pauselli, C., Minelli, G., Barchi, M. R. (2020). Using seismic attributes in seismotectonic research: An application to the Norcia Mw=6.5 earthquake (30 October 2016) in Central Italy. Solid Earth, 11, 329–348. https://doi.org/10.5194/se-11-329-2020

Lunina, O. V., Denisenko, I. A., Gladkov, A. A., Braga, C. (2023). Enigmatic surface ruptures at cape Rytyi and surroundings, Baikal Rift, Siberia: seismic hazard implication. Quaternary, 6, 22. https://doi.org/10.3390/quat6010022

Lunina, O. V., Gladkov, A. S., Afonkin, A. M., Serebryakov, E. V. (2016). Deformation style in the damage zone of the Mondy fault: GPR evidence (Tunka basin, southern East Siberia). Russian Geology and Geophysics, 57 (9), 1269–1282. https://doi.org/10.1016/j.rgg.2016.08.012

Lunina, O. V., Gladkov, A. S., Gladkov, A. A. (2019). Surface and shallow subsurface structure of the Middle Kedrovaya paleoseismic rupture zone in the Baikal Mountains from geomorphological and ground-penetrating radar investigations. Geomorphology, 326, 54–67. https://doi.org/10.1016/j.geomorph.2018.03.009

McCalpin, J. P., ed. (1996). Paleoseismology. San Diego: Academic Press.

McClymont, A. F., Green, A. G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D. C., Pettinga, J., Campbell, J., Langridge, R. (2008). Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics, 73, B11–23. https://doi.org/10.1190/1.2825408

Reiss, S., Reicherter, K. R., Reuther, C. (2003). Visualization and characterization of active normal faults and associated sediments by high-resolution GPR. Geological Society, London, Special Publications, 211, 247–55. https://doi.org/10.1144/GSL.SP.2001.211.01.20

Roberts, G. P., Raithatha, B., Sileo, G., Pizzi, A., Pucci, S., Walker, J.F., Wilkinson, M., McCaffrey, K., Phillips, R. J., Michetti, A. M., Guerrieri, L., Blumetti, A. M., Vittori, E., Cowie, P., Sammonds, P., Galli, P., Boncio, P., Bristow. C., Walters, R. (2010). Shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar. Geophysical Journal International, 183, 774–90. https://doi.org/10.1111/j.1365-246X.2010.04713.x

Tronicke, J., Villamor, P., Green, A. G. (2006). Detailed shallow geometry and vertical displacement estimates of the Maleme Fault Zone, New Zealand, using 2D and 3D georadar. Near Surface Geophysics, 4, 155–161. https://doi.org/10.3997/1873-0604.2005041

Turova, I., Deev, E., Pozdnyakova, N., Entin, A., Nevedrova, N., Shaparenko, I., Bricheva, S., Korzhenkov, A., Kurbanov, R., Panin, A. (2020). Surface-rupturing paleoearthquakes in the Kurai Fault Zone (Gorny Altai, Russia): Trenching and geophysical evidence. Journal of Asian Earth Sciences, 197, 104399. https://doi.org/10.1016/j.jseaes.2020.104399

Zhang, D., Li, J., Liu, S., Wang, G. (2019). Multi-frequencies GPR measurements for delineating the shallow subsurface features of the Yushu strike slip fault». Acta Geophysica, 67, 501–515. https://doi.org/10.1007/s11600-019-00271-9

Zhang, D., Li, J., Wu, Z., Ren, L. (2023). Reconstructing the geometry of the Yushu Fault in the Tibetan Plateau using TLS, GPR and trenching. Remote Sensing, 15 (8), 1994. https://doi.org/10.3390/rs15081994

Published

2024-07-08

How to Cite

Bricheva, S. S. (2024) “The structure of paleoearthquake surface ruptures along the Kubadru Fault (Gorny Altai): Ground-penetrating radar evidence”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.205.

Issue

Section

Articles