Obtaining artificial analogs of Zhamanshin impact glasses by high-temperature melting

Authors

  • Elena S. Sergienko St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7843-2135
  • Svetlana Yu. Yanson St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1341-2528
  • Vladimir V. Karpinskiy St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation; Geophysical Survey of the Russian Academy of Sciences, 189, pr. Lenina, Obninsk, 249035, Russian Federation https://orcid.org/0000-0003-2631-641X
  • Ivan A. Levitskii Belarusian State Technological University, 13A, ul. Sverdlova, Minsk, 220006, Belarus https://orcid.org/0000-0001-5001-605X
  • Ludmila F. Papko Belarusian State Technological University, 13A, ul. Sverdlova, Minsk, 220006, Belarus https://orcid.org/0000-0002-6728-009X
  • Petr V. Kharitonskii St. Peterburg Electrotechnical University LETI, 5, ul. Professora Popova, St. Petersburg, 197022, Russian Federation https://orcid.org/0000-0002-0448-7624

DOI:

https://doi.org/10.21638/spbu07.2024.207

Abstract

Establishing the genesis of coptogenic rocks and their evolution over geological time is of great importance for constructing scenarios of impact events and studying petrophysical properties of rocks in general. In spite of the fact that the Zhamanshin astrobleme (Kazakhstan) has been studied for 85 years, there are still many unsolved issues, including those in the field of modeling this impact event. Artificial analogs of impact glasses, various types of which are widespread in Zhamanshin, could reproduce the most characteristic features of natural objects in terms of their composition and morphology. By obtaining model samples from furnace charges of different composition, it is possible to project their characteristics on impactites by varying the cooling conditions that determine the processes of glass transition and crystallization. In this study, artificial analogs of impact glasses of the Zhamanshin astrobleme were obtained by melting the rocks of the astrobleme target. A gas-flame high-temperature furnace was used. The initial charge for melting was prepared in such a way as to obtain a complete melt in a sufficiently large sample volume (comparable with the volumes of some types of natural impactites of Zhamanshin — zhamanshinites and irghizites). The chemical and structural-phase composition of the artificial glasses was investigated by X-ray diffraction (XRD) and X-ray spectral fluorescence (XRF) analysis, scanning electron microscopy (SEM), and X-ray spectral microanalysis (XRMA). Differential scanning calorimetry was carried out to determine the phase transitions and chemical transformations of the source rocks under temperature changes. The chemical and structural-phase composition of the obtained glasses was compared with the characteristics of the Zhamanshin impactites and glasses of other genesis. The artificial glasses are identical to the Zhamanshin impactites. The proposed technique of obtaining analogs of impact glasses has shown its validity.

Keywords:

Zhamanshin astroblem, artificial analogs of impactites, glass, high-temperature melting

Downloads

Download data is not yet available.
 

References

Арискин, А. А., Мешалкин, С. С., Альмеев, Р. Р., Бармина, Г. С., Николаев, Г. С. (1997). Информационно-поисковая система INFOREX: анализ и обработка экспериментальных данных по фазовым равновесиям в изверженных горных породах. Петрология, 5 (1), 28–36.

Бойко, Я. И., Коробков, В. Ф., Баймагамбетов, Б. К., Сапожников, П. К., Улукпанов, К. Т. (2009). Астроблема Жаманшин: нереализованные и предстоящие задачи исследований. Уральский геологический журнал, 6, 40–50.

Бутвина, В. Г., Сафонов, О. Г., Литвин, Ю. А. (2009). Экспериментальное исследование плавления эклогита с участием флюида H2O-CO2-KCl при 5 ГПа. Доклады Академии наук, 427 (3), 365–369.

Горностаева, Т. А., Мохов, А. В., Карташов, П. М., Богатиков, О. А. (2016). Конденсатные стекла кратера Жаманшин. I. Иргизиты. Петрология, 24 (1), 1–20. https://doi.org/10.1134/S0869591115060028

Горностаева, Т. А., Мохов, А. В., Карташов, П. М., Богатиков, О. А. (2017). Конденсатные стекла кратера Жаманшин. II. Жаманшиниты. Петрология, 25 (1), 3–25. https://doi.org/10.1134/S0869591117010039

Горностаева, Т. А., Мохов, А. В., Карташов, П. М., Богатиков, О. А. (2018). Тип ударника и модель образования кратера Жаманшин, Казахстан. Петрология, 26 (1), 92–106. https://doi.org/10.1134/S0869591118010046

Граменицкий, Е. Н., Котельников, А. Р., Батанова, А. М., Щекина, Т. И., Плечов, П. Ю. (2000). Экспериментальная и техническая петрология. М.: Научный мир.

Иванова, В. П., Касатов, Б. К., Красавина, Т. Н., Розинова, Е. Л. (1974). Термический анализ минералов и горных пород. Л.: Недра.

Изох, Э. П. (1986). Петрохимия пород мишени, импактитов и тектитов астроблемы Жаманшин. Космическое вещество и Земля. Новосибирск: Наука, 159–203.

Изох, Э. П. и Ле, Д. А. (1983). Тектиты Вьетнама. Гипотеза кометной транспортировки. Метеоритика, 42, 158–169.

Козлов, Е. А. и Сазонова, Л. В. (2012). Преобразования горных пород в сферических ударных волнах: новые экспериментальные результаты. Петрология, 20 (4), 334–334. https://doi.org/10.1134/S0869591112040066

Куряева, Р. Г. и Сурков, Н. В. (2012). Показатель преломления и сжимаемость стекла состава Di(64)An(36) в интервале давлений 0–5.0 ГПа. Геохимия, 12, 1140–1146. https://doi.org/10.1134/S0016702912120038

Масайтис, В. Л. (1983). Структуры и текстуры взрывных брекчий и импактитов. Л.: Недра.

Масайтис, В. Л., Данилин, А. Н., Мащак, М. С. (1980). Геология астроблем. Л.: Недра.

Масайтис, В. Л. и Селивановская, Т. В. (1987). Петрохимические типы импактных расплавов кратера Жаманшин и их реконструируемые исходные субстраты. Записки ВМО, 116, 52–59.

Попов, В. К., Гребенников, А. В., Кузьмин, Я. В., Гласкок, М. Д., Ноздрачев, Е. А., Будницкий, С. Ю., Воробей, И. Е. (2017). Геохимия обсидианов озера Красное на Чукотке (Северо-Восток Сибири). Доклады академии наук, 476 (3), 332–338.

Рябов, В. В. и Золотухин, В. В. (1989). Ликвация в природных стеклах на примере траппов. Новосибирск: Наука, Сиб. отд-ние, 1989.

Скублов, C. Г. и Тюгай, О. М. (2005). Геохимия импактных стекол кратера Жаманшин (по данным ионного микрозонда). Геохимия, 7, 779–785.

Соболев Р. Н. (2017). Температурный интервал плавления кристаллического вещества. Доклады Академии наук, 473 (3), 351–354.

Соболев, Р. Н., Мальцев, В. В., Волкова, Е. А. (2020). Экспериментальное изучение процесса плавления минералов и горных пород. Расплавы, 3, 246–257.

Фельдман, В. И. и Сазонова, Л. В. (1993). Условия образования и застывания импактных расплавов в астроблеме Жаманшин. Петрология, 1 (6), 596–614.

Флоренский, П. В. и Дабижа, А. И. (1980). Метеоритный кратер Жаманшин. М.: Наука.

Фролов, К. В. (2012). Машиностроение: энциклопедия. М.: Машиностроение.

Шарыгин, И. С., Литасов, К. Д., Шацкий, А. Ф., Головин, А. В., Отани, Е., Похиленко, Н. П. (2013). Экспериментальное исследование плавления кимберлита трубки удачная-восточная при 3 6.5 ГПа и 900 1500° С. Доклады академии наук, 448 (4), 452–452. https://doi.org/10.1134/S1028334X13020086

Badyukov, D. D., Bezaeva, N. S., Rochette, P., Gattacceca, J., Feinberg, J. M., Kars, M., Kuzina, D. M. (2018). Experimental shock metamorphism of terrestrial basalts: Agglutinate‐like particle formation, petrology, and magnetism. Meteoritics & Planetary Science, 53 (1), 131–150. https://doi.org/10.1111/maps.13006

Bouška, V., Povondra, P., Florenskij, P., Řanda, Z. (1981). Irghizites and zhamanshinites: Zhamanshin crater USSR. Meteoritics, 16 (2), 171–184. https://doi.org/10.1111/j.1945-5100.1981.tb00541.x

Cicconi, M. R. and Neuville, D. R. (2019). Natural glasses. In: J. D. Musgraves, J. Hu, L. Calvez, eds, Springer Handbook of Glass. Springer, Cham. 771–812. https://doi.org/10.1007/978-3-319-93728-1_22

Von Engelhardt, W. and Graup, G. (1984). Suevite of the Ries crater, Germany: Source rocks and implications for cratering mechanics. Geologische Rundschau, 73 (2), 447–481. https://doi.org/10.1007/BF01824968

Esau, A., Hamann, C., Kaufmann, F. E. D., Sergienko, E., Yanson, S., Karpinsky, V., Hecht, L. (2021). Heterogeneities of Impact Melts from the Zhamanshin Crater: A Two-Stage Mixing Scenario? Lunar Planet. Sci. XXVIII. Lunar Planet. Inst., Houston. #2548 (abstr.).

French, B. and Short, N. (1968). Shock metamorphism of natural material. Baltimore: Mono Book Corp. https://doi.org/10.1126/science.153.3738.903.b

French, B. M. and Koeberl, C. (2010). The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth-Science Reviews, 98 (1–2), 123–170. https://doi.org/10.1016/j.earscirev.2009.10.009

Glass, B. P., Fredriksson, K., Florensky, P. V. (1983). Microirghizites recovered from a sediment sample from the Zhamanshin impact structure. Journal of Geophysical Research: Solid Earth, 88 (S01), B319–B330.

Glass B. P. (2016) Glass: the geologic connection. International Journal of Applied Glass Science, 7 (4), 435–445. https://doi.org/10.1111/ijag.12240

Jonášová Š., Ackerman, L., Žák, K., Skála, R., Ďurišová, J., Deutsch, A., Magna, T. (2016). Geochemistry of impact glasses and target rocks from the Zhamanshin impact structure. Geochimica et Cosmochimica Acta, 190, 239–264. https://doi.org/10.1016/j.gca.2016.06.031

Koeberl, C. (1997). Libyan Desert Glass: geochemical composition and origin. Silicon, 96, 121–131.

Koeber, C. and Fredriksson, K. (1986). Impact glasses from Zhamanshin crater (USSR): Chemical composition and discussion of origin. Earth and planetary science letters, 78(1), 80–88. https://doi.org/10.1016/0012-821X(86)90174-3

Lampropoulou P., Laskaris N., Petrounias P., Giannakopoulou P. P., Rogkala A., Kalampounias A. G., Iliopoulos I. (2020). Petrogeochemical approaches to the characterization of obsidian derived from Nychia area (Milos Island, Greece) using combined methods. Microchemical Journal, 156, 104843. https://doi.org/10.1016/j.microc.2020.104843

Melosh, H. J. (1989). Impact cratering: A geologic process. New York: Oxford University Press. Oxford: Clarendon Press.

Mizera, J., Řanda, Z., Tomandl, I. (2012). Geochemical characterization of impact glasses from the Zhamanshin crater by various modes of activation analysis. Remarks on genesis of irghizites. Journal of Radioanalytical and Nuclear Chemistry, 1, 359–376. https://doi.org/10.1007/s10967-012-1673-6

Osinski, G. R. and Pierazzo, E. (2013). Impact cratering: Processes and products. John Wiley & Sons.

Rai, A. K., Pati, J. K., Kumar, R. (2019). Spectro-chemical study of moldavites from Ries impact structure (Germany) using LIBS. Optics & Laser Technology, 114, 146–157. https://doi.org/10.1016/j.optlastec.2019.01.028

Raisbeck, G. M., Yiou, F., Zhou, S. Z., Koeberl, C. (1988). BE-10 in irghizite tektites and zhamanshinite impact glasses. Chemical Geology, 70, 120. https://doi.org/10.1016/0009-2541(88)90540-2

Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71.

Schmieder, M., Kring, D. A. (2020). Earth's Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. Astrobiology, 1, 91–141. https://doi.org/10.1089/ast.2019.2085

Schulz, T., Sackl, F., Fragner, E., Luguet, A., van Acken, D., Abate, B., Badjukov, D. Koeberl, C. (2020). The Zhamanshin impact structure, Kazakhstan: A comparative geochemical study of target rocks and impact glasses. Geochimica et Cosmochimica Acta, 268, 209–229. https://doi.org/10.1016/j.gca.2019.08.045

Sergienko E. S., Yanson S. Y., Kosterov A., Kharitonskii P. V., Frolov, A. M. (2021). Suevites and Tagamites of Zhamanshin Astrobleme: Distribution in the Crater and Petrographic Features. IOP Conference Series: Earth and Environmental Science, 4, 042080. https://doi.org/10.1088/1755-1315/666/4/042080

Sergienko, E. (2022a). EPMA Data for Obtaining artificial analogues of impact glasses by high-temperature melting. Mendeley Data, 2. https://doi.org/10.17632/n3hrnxwmv8.2

Sergienko, E. (2022b). X-ray fluorescent data for Obtaining artificial analogues of impact glasses by high-temperature melting. Mendeley Data, 2. https://doi.org/10.17632/dwxyww6c6b.2

Shaw, H. F. and Wasserburg, G. J. (1982). Age and provenance of the target materials for tektites and possible impactites as inferred from Sm-Nd and Rb-Sr systematics. Earth and Planetary Science Letters, 60, 155–177. https://doi.org/10.1016/0012-821X(82)90001-2

Stöffler, D. and Grieve, R. A. F. (2007). Impactites. In: D. Fettes and J. Desmons, eds, Metamorphic Rocks: A Classification and Glossary of Terms. University Press, Cambridge. https://doi.org/10.3749/canmin.45.6.1545

Surkov, N. V. and Gartvich, Y. G. (2012). Physicochemical model for the crystallization of rocks of the calcalkaline series. Geochemistry International, 10, 799–815. https://doi.org/10.1134/S0016702912100060

Surkov, N. V., Gartvich, Y. G., Izokh, O. P. (2007). Stability and phase relations of nonstoichiometric clinopyroxenes in the join diopside-Ca-Eskola component at high pressures. Geochemistry International, 6, 569–579. https://doi.org/10.1134/S0016702907060055

Ubbelohde, A. R. (1950). Melting and crystal structure. Quarterly Review, 4, 356–381. https://doi.org/10.1039/QR9500400356

Ubbelohde, A. R. (1965). Melting and Crystal Structure — Some Current problems. Angewandte Chemie Int. ed., 7, 587–591. https://doi.org/10.1002/anie.196505871

Vêtvička, I., Frank, J., Drtina, J. (2010). Electron microprobe analysis (WDS EPMA) of Zhamanshin glass reveals the impactor and a common role of accretion in the origin of splash-form impact glass. IOP Conference Series: Materials Science and Engineering, 1, 012029. https://doi.org/10.1088/1757-899X/7/1/012029

Published

2024-07-08

How to Cite

Sergienko, E. S. (2024) “Obtaining artificial analogs of Zhamanshin impact glasses by high-temperature melting”, Vestnik of Saint Petersburg University. Earth Sciences, 69(2). doi: 10.21638/spbu07.2024.207.

Issue

Section

Articles