What is the age of the Udzha paleorift?: U-Pb age of detrital zircons from Udzha basin terrigenous succession, northern Siberia
DOI:
https://doi.org/10.21638/spbu07.2022.401Abstract
The Udzha paleorift is located between the Anabar and Olenek rivers and is a key structure indicative of the breakup of the Nuna supercontinent. However, the age of initiation and duration of paleorift activity is not defined nowadays. Here we present new U-Pb data for detrital zircons from two terrigenous and volcanic-sedimentary successions of the Udzha sedimentary basin (Unguokhtakh and Udzha Fm), from terrigenous rocks overlying the Udzha basin (Tomtor Fm), and from the sandstone of the lower Mesoproterozoic Mukun Group in the northwest part of Anabar region. The dating results show that sedimentation in the Udzha rift basin began later than ca 1459 Ma, and the duration of the rift activity is estimated as not longer than 73 My. The Udzha rift basin was an isolated basin in the northern part of Siberia, and detrital material came from local sources. A previously unknown source for tuff-sandstone of Unguokhtah Formation with an age of 1850 Ma has been identified, which corresponds by age to the Paleoproterozoic post-orogenic magmatism of the Siberian Craton. In the Neoproterozoic, detrital material of the Tomtor Fm was supplied from the northeast, and the sources were igneous suites of active margin or collision settings. The maximum depositional age of Tomtor Fm is estimated as 565 Ma on the youngest zircon population, which suggests an over 800 Ma gap in sedimentation in northern Siberia in Meso- Neoproterozoic.
Keywords:
Udzha paleorift, Siberia, Mesoproterozoic, Neoproterozoic, provenances, U-Pb dating, detrital zircons, Nuna, Rodinia
Downloads
References
Donskaya, T. V. (2020). Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids. Precambrian Research, 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869
Donskaya, T. V. and Gladkochub, D. P. (2021). Post-collisional magmatism of 1.88-1.84 Ga in the southern Siberian Craton: An overview. Precambrian Research, 367, 106447. https://doi.org/10.1016/j.precamres.2021.106447
Erlich, E. N. and Stepanenko, V. I. (1965). Geological map of the USSR, scale 1: 200,000, Anabar series, sheet R-50-IX, X. Leningrad: Nedra Publ. (In Russian)
Ernst, R. E., Hamilton, M. A., Söderlund, U., Hanes, J. A., Gladkochub, D. P., Okrugin, A. V., Kolotilina, T., Mekhonoshin, A. S., Bleeker, W., LeCheminant, A. N., Buchan, K. L., Chamberlain, K. R. and Didenko, A. N. (2016). Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nature Geoscience, 9, 464-469. https://doi.org/10.1038/ngeo2700
Evans, D. A. D. and Mitchell, R. N. (2011). Assembly and breakup of the core of Paleoproterozoic - Mesoproterozoic supercontinent Nuna. Geology, 39, 443-446. https://doi.org/10.1130/G31654.1
Gladkochub, D. P., Stanevich, A. M., Travin, A. V., Mazukabzov, A. M., Konstantinov, K. M., Yudin, D. S. and Kornilova, T. A. (2009). The Mesoproterozoic Udzha paleorift (Northern Siberian Craton): New data on age of basites, straigraphy, and microphytology. Doklady Earth Sciences, 425, 371-377. https://doi.org/10.1134/S1028334X09030052
Gusev, N. I., Pushkin, M. G., Kruglova, A. A., Sergeeva, L. Yu., Bogomolov, V. P., Stroev, T. S. and Moreva, N. V. (2016). State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Sheet R-49 - Olenyok. Explanatory note. St Petersburg: Cartographic factory VSEGEI Publ. (In Russian)
Gusev, N. I., Rudenko, V. E., Berezhnaya, N. G., Skublov, S. G., Moreva, N. V., Larionov, A. N. and Lepekhina, E. N. (2012). Age of granulites of the Daldynskaya Group of the Anabar Shield. Regional Geology and Metallogeny, 52, 29-38. (In Russian)
Gusev, N. I., Sergeeva, L. Yu., Larionov, A. N. and Skublov, S. G. (2020). Relics of the Eoarchean continental crust of the Anabar Shield, Siberian craton. Petrology, 28, 115-138. https://doi.org/10.31857/S086959032002003X (In Russian)
Johansson, Å. (2014). From Rodinia to Gondwana with the ‘SAMBA’ model - A distant view from Baltica towards Amazonia and beyond. Precambrian Research, 244, 226-235. https://doi.org/10.1016/j.precamres.2013.10.012
Khudoley, A. K., Chamberlain, K. R., Ershova, V. B., Sears, J. W., Prokopiev, A. V., MacLean, J., Kazakova, G. G., Malyshev, S. V., Molchanov, A., Kullerud, K., Toro, J., Miller, E. L., Veselovskiy, R. V., Li, A. and Chipley, D. (2015). Proterozoic supercontinental restorations: Constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambrian Research, 259, 78-94. https://doi.org/10.1016/j.precamres.2014.10.003
Kuptsova, A. V., Khudoley, A. K., Davis, W., Rainbird, R. H. and Molchanov, A. V. (2015). Results of the U-Pb age of detrital zircons from Upper Proterozoic deposits of the eastern slope of the Anabar uplift. Stra- tigraphy and Geological Correlation, 23, 246-261. https://doi.org/10.1134/S0869593815030053
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. and Vernikovsky, V. A. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160, 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
Malyshev, S. V., Ivanov, A. V., Khudoley, A. K., Marfin, A. E., Kamenetsky, V. S., Kamenetsky, M. B. and Lebedeva, O. Y. (2021). Global implication of mesoproterozoic (~ 1.4 Ga) magmatism within the Sette-Daban Range (Southeast Siberia). Scientific Reports, 11, 20484. https://doi.org/10.1038/s41598-021-00010-5
Malyshev, S., Pasenko, A., Ivanov, A., Gladkochub, D. P., Savatenkov, V. M., Meffre, S., Abersteiner, A., Kamenetsky, V. S. and Shcherbakov, V. (2018). Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data. Minerals, 8 (12), 555. https://doi.org/10.3390/min8120555
Meert, J. G. and Santosh, M. (2017). The Columbia supercontinent revisited. Gondwana Research, 50, 67-83. https://doi.org/10.1016/j.gr.2017.04.011
Metelkin, D. V., Vernikovsky, V. A. and Matushkin, N. Y. (2015). Arctida between Rodinia and Pangea. Precambrian Research, 259, 114-129. https://doi.org/10.1016/j.precamres.2014.09.013
Okhlopkov, V. I., Koval, S. G., Burtsev, I. N., Nepapyshev, V. A. and Koptil, V. I. (1987). Report on the GGS at a scale of 1:50,000 on the territory of sheets R-50-27-B; 28-A, B, D; 29; thirty; 31; 40-B,G; 41-B,C,D; 42; 43 on the work of the Verkhne-Udzhinsky object of the Anabar party in 1980-1987, settlement Nyurba. (In Russian)
Panteleev, A. V., Shemardinov, R. M., Ponomarenko, Z. F. and Zotova, N. S. (1985). Geological structure and assessment of oil and gas content in the areas of parametric drilling (Krasnoyarsk Territory). Geological report on the results of drilling of the Kostrominskaya well No. 1. Krasnoyarsk: Yeniseineftegazgeologiia Publ. (In Russian)
Pasenko, A. M. and Malyshev, S. V. (2020). Paleomagnetism and Age Correlation of the Mesoproterozoic Rocks of the Udzha and Olenek Uplifts, Northeastern Siberian Platform. Izvestiya. Physics of the Solid Earth, 56 (6), 864-887. https://doi.org/10.1134/S1069351320050067
Pasenko, A. M., Malyshev, S. V., DuFrane, S. A. and Shatsillo, A. V. (2020). Paleomagnetism and provenance of the lower Cambrian sedimentary rocks of the Udzha Uplift (north of the Siberian platform). Vestnik of Saint Petersburg University. Earth Sciences. 65 (3), 552-576. https://doi.org/10.21638/spbu07.2020.308 (In Russian)
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. and Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 2508-2518. https://doi.org/10.1039/c1ja10172b
Podkovyrov, V. N., Kotova, L. N., Kotov, A. B., Kovach, V. P., Graunov, O. V. and Zagornaya, N. Y. (2007). Provenance and Source Rocks of Riphean Sandstones in the Uchur-Maya Region (East Siberia): Implications of Geochemical Data and Sm-Nd Isotopic Systematics. Stratigraphy and Geological Correlation, 15, 47-62.
Powerman, V. I., Buyantuev, M. D. and Ivanov, A. V. (2021). A review of detrital zircon data treatment, and launch of a new tool ‘Dezirteer’ along with the suggested universal workflow. Chemical Geology, 583, 120437. https://doi.org/10.1016/j.chemgeo.2021.120437
Priyatkina, N., Collins, W. J., Khudoley, A., Zastrozhnov, D., Ershova, V., Chamberlain, K., Shatsillo, A. and Proskurnin, V. (2017). The Proterozoic evolution of northern Siberian Craton margin: a comparison of U-Pb-Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform.International Geology Review, 59 (13), 1632-1656. https://doi.org/10.1080/00206814.2017.1289341
Priyatkina, N., Ernst, R. E and Khudoley, A. K. (2020). A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data. Precambrian Research, 340, 105645. https://doi.org/10.1016/j.precamres.2020.105645
Prokopiev, A. V., Parfenov, L. M., Tomshin, M. D. and Kolodeznikov, I. I. (2001). Cover of the Siberian Platform and adjacent fold-thrust belts. In: L. M. Parfenov and M. I. Kuzmin, eds. Tectonics, geodynamics and metallogeny of the territory of the Republic of Sakha (Yakutia). Moscow: MAIK Nauka/Interperiodika Publ., 113-155. (In Russian)
Puchkov, V. N., Bogdanova, S. V., Ernst, R. E., Kozlov, V. I., Krasnobaev, A. A., Söderlund, U., Wingate, M. T. D., Postnikov, A. V. and Sergeeva, N. D. (2013). The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos, 174, 109-124. https://doi.org/10.1016/j.lithos.2012.08.021
Roberts, N. M. W. (2013). The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geoscience Frontiers, 4, 681-691. https://doi.org/10.1016/j.gsf.2013.05.004
Rogers, J. J. W. and Santosh, M. (2002). Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5, 5-22. https://doi.org/10.1016/S1342-937X(05)70883-2
Savatenkov, V. M., Malyshev, S. V., Ivanov, A. V., Meffre, S., Abersteiner, A., Kamenetsky, V. S. and Pasenko, A. M. (2019). An advanced stepwise leaching technique for derivation of initial lead isotope ratios in ancient mafic rocks: A case study of Mesoproterozoic intrusions from the Udzha paleo-rift, Siberian Craton. Chemical Geology, 528, 119253. https://doi.org/10.1016/j.chemgeo.2019.07.028
Semikhatov, M. A. and Serebryakov, S. N. (1983). Siberian hypostratotype of the Riphean. Moscow: Nauka Publ. (In Russian)
Shpunt, B. R., Shamshina, E. A., Shapovalova, I. G., Krylov, I. N., Davydov, Yu. V., Kelle, E. Ya., Zabuga, B. R. and Lazebnik, K. A. (1976). Precambrian of the Anabar-Olenek interfluve. Novosibirsk: Nauka Publ. (In Russian)
Shpunt, B. R., Shapovalova, I. G. and Shamshina, E. A. (1982). Pozdnii dokembrii severa Sibirskoi platformy (The Late Precambrian of the Northern Siberian Platform). Novosibirsk: Nauka Publ. (In Russian)
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. and Whitehouse, M. J. (2008). Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1-35. https://doi.org/https://doi.org/10.1016/j.chemgeo.2007.11.005
Upton, B. G. J., Rämö, O. T., Heaman, L. M., Blichert-Toft, J., Kalsbeek, F., Barry, T. L. and Jepsen, H. F. (2005). The Mesoproterozoic Zig-Zag Dal basalts and associated intrusions of eastern North Greenland: mantle plume-lithosphere interaction. Contributions to Mineralogy and Petrology, 149, 40-56. https://doi.org/10.1007/s00410-004-0634-7
Verbaas, J., Thorkelson, D. J., Milidragovic, D., Crowley, J. L., Foster, D., Daniel Gibson, H. and Marshall, D. D. (2018). Rifting of western Laurentia at 1.38 Ga: The Hart River sills of Yukon, Canada. Lithos, 316-317, 243-260. https://doi.org/10.1016/j.lithos.2018.06.018
Vernikovsky, V. A., Dobretsov, N. L., Metelkin, D. V., Matushkin, N. Y. and Koulakov, I. Y. (2013). Concerning tectonics and the tectonic evolution of the Arctic.Russian Geology and Geophysics, 54, 838-858. https://doi.org/10.1016/j.rgg.2013.07.006
Vishnevskaya, I. A., Letnikova, E. F., Vetrova, N. I., Kochnev, B. B. and Dril, S. I. (2017). Chemostratigraphy and detrital zircon geochronology of the Neoproterozoic Khorbusuonka Group, Olenek Uplift, Northeastern Siberian platform. Gondwana Research, 51, 255-271. https://doi.org/10.1016/J.GR.2017.07.010
Williams, I. S. (1997). U-Th-Pb Geochronology by Ion Microprobe.In: Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, vol. 7, 1-35. https://doi.org/10.5382/Rev.07.01
Zhang, S., Li, Z. X., Evans, D. A. D., Wu, H., Li, H. and Dong, J. (2012). Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354, 145-155. https://doi.org/10.1016/j.epsl.2012.07.034
Zhao, G., Sun, M., Wilde, S. A. and Li, S. (2004). A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Reviews, 67, 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Earth Sciences" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.