Link of ENSO and Southern Annular Mode as elements of Global Atmospheric Oscillation

Authors

  • Ilya V. Serykh Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow, Russia, 117997
  • Dmitry M. Sonechkin Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow, Russia, 117997

DOI:

https://doi.org/10.21638/spbu07.2022.404

Abstract

Based on the monthly average data of NCEP/NCAR Reanalysis, using a specially developed technique, the interannual variability of the sea level pressure (SLP) anomalies associated with the Global Atmospheric Oscillation (GAO) for the period 1950-2021 was studied. The field of mean deviations of the SLP anomalies during the El Niño – Southern Oscillation (ENSO) from the interannual GAO variability has been calculated. It is shown that the variability of the SLP anomalies during the GAO contains, in addition to the mode associated with the ENSO, also the mode of interannual climatic variability associated with the Antarctic Oscillation (AAO) – the Southern Annular Mode (SAM). It was found that the GAO does not include a part of the SLP anomaly variability associated with El Niño and La Niña events of the Central Pacific type. At all other grid nodes, the field of mean deviations of the SLP anomalies in the ENSO from the GAO has SLP differences slightly different from zero and formally statistically insignificant. This means that in the interannual climatic variability of the SLP associated with the GAO, there are only two modes: ENSO and SAM. With the help of cross-wavelet analysis, the relationships between the ENSO and SAM indices were studied. Negative relationships were found between these indices on fluctuation periods of about 11 years. An analysis of the time series of these indices and the time series of total solar irradiance (TSI) made it possible to put forward a hypothesis about the influence of synchronization and desynchronization of quasi-11-year changes in solar activity and ENSO on the weakening and strengthening of negative relationships between ENSO and SAM at periods of oscillations of about 11 years.

Keywords:

El Niño – Southern Oscillation, Antarctic Oscillation, Southern Annular Mode, Global Atmospheric Oscillation, 11-year solar cycle

Downloads

Download data is not yet available.
 

References

Bas.ac.uk (2022). British Antarctic Survey - An observation-based Southern Hemisphere Annular Mode Index. [online] Available at: https://legacy.bas.ac.uk/met/gjma/sam.html [Accessed: 15.03.2022].

Bertler, N. A. N., Naish, T. R., Mayewski, P. A. and Barrett, P. J. (2006). Opposing oceanic and atmospheric ENSO influences on the Ross Sea Region, Antarctica. Adv. Geosci., 6, 83-86.

Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163-172.

Byshev, V. I., Neiman, V. G., Ponomarev, V. I., Romanov, Yu. A., Serykh, I. V. and Tsurikova, T. V. (2014). The Influence of Global atmospheric oscillation on formation of climate anomalies in the Russian Far East. Doklady Earth Sciences, 458 (1), 1116-1120.

Cane, M. A. and Zebiak, S. E. (1985). A theory for El Nino and the Southern Oscillation. Science, 228, 1084-1087.

Cai, W., Sullivan, A. and Cowan, T. (2011).Interactions of ENSO, the IOD, and the SAM in CMIP3 Models. Journal of Climate, 24, 1688-1704.

Coddington, O., Lean, J., Pilewskie, P., Snow M. and Lindholm D. (2016). A solar irradiance climate data record. Bull. Amer. Meteor. Soc., 97 (7), 1265-1282.

Cpc.ncep.noaa.gov (2022). NOAA Climate Prediction Centre - Historical El Nino / La Nina episodes (1950-present). [online] Available at: https://cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php [Accessed: 15.03.2022].

Crockart, C. K., Vance, T. R., Fraser, A. D. Abram, N. J., Criscitiello, A. S., Curran, M. A. J., Favier, V., Gallant, A. J. E., Kittel, Ch., Kjær, H. A., Klekociuk, A. R., Jong, L. M., Moy, A. D., Plummer, Ch. T., Vallelonga, P. T., Wille, J. and Zhang, L. (2021). El Niño-Southern Oscillation signal in a new East Antarctic ice core, Mount Brown South. Clim. Past, 17, 1795-1818.

Dätwyler, C., Grosjean, M., Steiger, N. J. and Neukom, R. (2020). Teleconnections and relationship between the El Niño-Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium. Clim. Past, 16, 743-756.

Ding, H., Greatbatch, R. J. and Gollan, G. (2014). Tropical influence independent of ENSO on the austral summer Southern Annular Mode. Geophys. Res. Lett., 41, 3643-3648.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937-1958.

Ferster, B. S., Subrahmanyam, B. and Macdonald, A. M. (2018). Confirmation of ENSO-Southern Ocean Teleconnections Using Satellite-Derived SST. Remote Sens., 10, 331.

Gong, D. and Wang, S. (1999). Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459-462.

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys., 11, 561-566.

Guan, Y., Huang, B., Zhu, J., Hu, Z-Z. and Kinter, J. L. (2014).Interannual variability of the South Pacific Ocean in observations and simulated by the NCEP Climate Forecast System, vers. 2. Clim Dyn., 43, 1141-1157.

Han, T., Wang, H. and Sun, J. (2017). Strengthened relationship between the Antarctic Oscillation and ENSO after the mid-1990s during austral spring. Adv. Atmos. Sci., 34, 54-65.

Hsu, Y. C., Lee, C. P., Wang, Y. L., Wu, C. R. and Lui, H. K. (2018). Leading El-Niño SST Oscillations around the Southern South American Continent. Sustainability, 10, 1783.

Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H. and Zhang, H. M. (2017). Extended Reconstructed Sea Surface Temperature, vers. 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179-8205.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W. G., Diven, D., Gandin, L. S., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J. E., Mo, K. S., Ropelevsky, K., Wang, J. and Letmaa, A. (1996). The NMC/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437-471.

Kim, B. M., Choi, H., Kim, S. J. and Choi, W. (2017). Amplitude-dependent relationship between the Southern Annular Mode and the El Niño Southern Oscillation in austral summer. Asia-Pacific J. Atmos. Sci., 53, 85-100.

Lasp.colorado.edu (2022). LASP Interactive Solar Irradiance Data Center - NRLTSI2 Monthly Averages, Time Series. [online] Available at: https://lasp.colorado.edu/lisird/data/nrl2_tsi_P1M/[Accessed: 15.03.2022].

Lee, D. Y., Petersen, M. R. and Lin, W. (2019). The Southern Annular Mode and Southern Ocean Surface Westerly Winds in E3SM. Earth Sp. Sci., 6, 2624-2643.

Li, F., Wang, H. and Gao, Y. (2015). Modulation of Aleutian Low and Antarctic Oscillation co-variability by ENSO. Clim. Dyn., 44, 1245-1256.

Lim, E., Hendon, H. H. and Rashid, H. (2013). Seasonal Predictability of the Southern Annular Mode due to Its Association with ENSO. Journal of Climate, 26 (20), 8037-8054.

Marshall, G. J. (2003). Trends in the Southern Annular Mode from observations and reanalyses. J. Clim., 16, 4134-4143.

Peng J. B., Chen L. T. and Zhang Q. Y. (2014). The relationship between the El Niño/La Niña cycle and the transition chains of four atmospheric oscillations. Part I: The four oscillations. Adv. Atmos. Sci., 31 (2), 468-479.

Pohl, B., Fauchereau, N., Reason, C. J. C. and Rouault, M. (2010). Relationships between the Antarctic Oscillation, the Madden-Julian Oscillation, and ENSO, and Consequences for Rainfall Analysis. Journal of Climate, 23 (2), 238-254.

Rahaman, W., Chatterjee, S., Ejaz, T. and Thamban, M. (2019). Increased influence of ENSO on Antarctic temperature since the Industrial Era. Sci. Rep., 9, 6006.

Serykh, I. V. and Sonechkin, D. M. (2019). Nonchaotic and globally synchronized short-term climatic variations and their origin. Theoretical and Applied Climatology, 137 (3-4), 2639-2656.

Serykh, I. V. and Sonechkin, D. M. (2020).Interrelations between temperature variations in oceanic depths and the Global atmospheric oscillation. Pure and Applied Geophysics, 177 (12), 5951-5967.

Serykh, I. V. and Sonechkin D. M. (2021a). El Niño-Global Atmospheric Oscillation as the main mode of interannual climate variability. Atmosphere, 12 (11), 1443.

Serykh, I. V. and Sonechkin, D. M. (2021b). El Niño forecasting based on the global atmospheric oscillation. International Journal of Climatology, 41, 3781-3792.

Serykh, I. V., Sonechkin, D. M., Byshev, V. I., Neiman, V. G. and Romanov Yu. A. (2019). Global Atmospheric Oscillation: An Integrity of ENSO and Extratropical Teleconnections. Pure and Applied Geophysics, 176 (8), 3737-3755.

Stepanov V. N. (2019). The Impact of the Processes in the Southern Ocean on ENSO Development. Earth Sciences, 8 (2), 117-125.

Thompson, D., Solomon, S., Kushner, P., England, M. H., Grise, K. M. and Karoly, D. J. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci., 4, 741-749.

Torrence, D. C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78.

Torrence, D. C. and Webster, P. J. (1999).Interdecadal changes in the ENSO-monsoon system. J. Climate, 12, 2679-2690.

Turney, C. S. M., Fogwill, C. J., Palmer, J. G., Sebille, E., Thomas, Z., McGlone, M., Richardson, S., Wilmshurst, J. M., Fenwick, P., Zunz, V., Goosse, H., Wilson, K.-J., Carter, L., Lipson, M., Jones, R. T., Harsch, M., Clark, G., Marzinelli, E., Rogers, T., Rainsley, E., Ciasto, L., Waterman, S., Thomas, E. R. and Visbeck, M. (2017). Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction. Clim. Past, 13, 231-248.

Vakulenko, N. V., Kotlyakov, V. M., Monin, A. S. and Sonechkin, D. M. (2004). Evidence for the leading role of remperature variations relative to greenhousegas concentration variations in the Vostoc ice core record. Doklady Earth Sciences, 397 (5), 663-667.

Vakulenko, N. V., Serykh, I. V. and Sonechkin, D. M. (2018). Chaos and order in atmosheric dynamics Part 3. Predictability of El Niño. Izvestiia Vysshikh Uchebnykh Zavedeniy. Prikladnaia Nelineynaia Dinamika, 26 (4), 75-94.

Wallace, J. M. and Thompson, D. W. J. (2002). The Pacific Center of Action of the Northern Hemisphere Annular Mode: Real or Artifact? Journal of Climate, 15 (14), 1987-1991.

Wang, G. and Cai, W. (2013). Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Sci. Rep., 3, 2039.

Wyrtki, K. (1975). El Nino - The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572-584.

Yeo, S. R. and Kim, K. Y. (2015). Decadal changes in the Southern Hemisphere sea surface temperature in association with El Niño-Southern Oscillation and Southern Annular Mode. Clim. Dyn., 45, 3227-3242.

Yu, J., Paek, H., Saltzman, E. S. and Lee, T. (2015). The Early 1990s Change in ENSO-PSA-SAM Relationships and Its Impact on Southern Hemisphere Climate. Journal of Climate, 28 (23), 9393-9408.

Yuan X. (2004). ENSO-related impacts on Antarctic Sea ice: A synthesis of phenomenon and mechanisms. Antarctic Science, 16 (4), 415-425.

Yiu, Y. Y. S. and Maycock, A. C. (2020). The linearity of the El Niño teleconnection to the Amundsen Sea region. QJR Meteorol Soc., 146, 1169-1183.

Zheng, F., Li, J. and Ding, R. (2017). Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay. Adv. Atmos. Sci., 34, 1358-1379.

Published

2022-11-16

How to Cite

Serykh, I. V. and Sonechkin, D. M. (2022) “Link of ENSO and Southern Annular Mode as elements of Global Atmospheric Oscillation”, Vestnik of Saint Petersburg University. Earth Sciences, 67(4). doi: 10.21638/spbu07.2022.404.

Issue

Section

Articles