Wladimir Köppen, Alfred Wegener, and Milutin Milankovitch: their impact on modern paleoclimate research and the revival of the Milankovitch hypothesis

Authors

  • Йорн Тиде St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu07.2018.207

Abstract

Wladimir Köppen (1846–1940, originally from St. Petersburg), Alfred Wegener (1880–1930, originally from Berlin) and Milutin Milankovitch (1879–1958, originally from Dalj, then Austria-Hungary, today eastern Croatia) made significant contributions to paleoclimatology during the early years of the 20th century. Köppen described the global climate zonation, Wegener defined the continental drift during the Phanerozoic, using Köppen’s climate zonations applied to paleogeographic scenarios of the geological past, and Milankovitch introduced regularly changing orbital parameters as controls of past climatic changes providing a precise timescale for Glacials and Interglacials during the Quaternary. By combining their scientific efforts, they succeeded to change our understanding of Earth history fundamentally, each of them with their specific expertise and their wide scientific horizons. Wladimir Köppen’s scientific work began with observations from the Crimea and from contributing to produce synoptic weather maps while he was working at the Central Physical Observatory in St. Petersburg. Later he pursued his scientific career at the “Deutsche Seewarte” in Hamburg. While producing numerous scientific papers, he was also engaged in instrumental development (kite technology) and in shaping the organisational framework for meteorology, both nationally and internationally. One of his major scientific achievements was the definition of the global climate zonation which he repeatedly published in global maps and which is still used today.

Keywords:

paleoclimatology, Glacials and Interglacials, Milankovitch frequencies, cyclostratigraphy, Wladimir Köppen, Alfred Wegener, Milutin Milankovitch

Downloads

Download data is not yet available.
 

References


References

Agassiz, L., 1838. On the erratic blocks of the Jura. Edinburgh New Philos. J. 24, 176–179.

Augustin, L., Barbante, C., Barnes, P. R., Barnola, J. M., Bigler, M., Castellano, E., Cattani, O., Chappellaz, J., Dahl-Jensen, D., Delmonte, B., Dreyfus, G., Durand, G., Falourd, S., Fischer, H., Flückiger, J., Hansson, M. E., Huybrechts, P., Jugie, G., Johnsen, S. J., Jouzel, J., Kaufmann, P., Kipfstuhl, J., Lambert, F., Lipenkov, V. Y., Littot, G. C., Longinelli, A., Lorrain, R., Maggi, V., Masson-Delmotte, V., Miller, H., Mulvaney, R., Oerlemans, J., Oerter, H., Orombelli, G., Parrenin, F., Peel, D. A., Petit, J. R., Raynaud, D., Ritz, C., Ruth, U., Schwander, J., Siegenthaler, U., Souchez, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tabacco, I. E., Udisti, R., Van De Wal, R. S., Van Den Broeke, M., Weiss, J., Wilhelms, F., Winther, J. G., Wolff, E. W., Zucchelli, M., 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628.

André, P., Berger, W. H., 1997. Modellierung der Eiszeiten: Klimazyklen und Klimaübergänge. Geowissenschaften 15 (1), 20–27.

Berger, A., 1984. Accuracy and frequency stability of the Earth’s orbital elements during the Quaternary, in: Berger, A., Imbrie, J., Hays, J., Kukla, G., Saltzman, B. (Eds.). Milankovitch and Climate. D.Reidel, Dordrecht, 3–40.

Berger, A., 1988. Milankovitch Theory and Climate. Rev. Geophys. 26 (4), 624–657.

Berger, A., 1989. Pre-Quaternary Milankovitch frequencies. Nature, 342, 133.

Berger, A. (ed.), 1995. Milutin Milankovic 1879–1958 (from his autobiography with comments by his son, Vasko and a preface by André Berger). Europ. Geophys. Soc., FRG, Katlenburg-Lindau.

Berger, A., 2012. A Brief History of the Astronomical Theories of Paleoclimates, in: Climate Change: Inferences from Paleoclimate and Regional Aspects / Berger, A., Mesinger, F., Sijacki, D. (Eds.). Springer, Verlag, Wien, 107–129.

Berger, W. H., 2012. Milankovitch Theory — Hits and Misses. Scripps Inst. Techn. Rep. (01–16–2012), La Jolla CA.

Budyko, M. I., Ronov, A. B., Yanshin, A. L., 1987. History of the Earth’s Atmosphere. Springer, Berlin-Heidelberg. Deutsche Seewarte Hamburg (ed.), 1926. Köppen-Heft, Ann. Hydrogr. Marit. Meteor. 1926, 1–11.

Esmark, J., 1824. Bidrag til vor jordklodes historie. Magazin Naturvidenskab, 2(1), 29–54.

Fischer, A. G., Roberts, L. T., 1991. Cyclicity in the Green River Formation (Lacustrine Eocene) of Wyoming. J. Sediment. Petrol. 61(7), 1146–1154.

Hays, J. D., Imbrie, J., Shackleton, 1976. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132.

Imbrie, J., Berger, A., Shackleton, N. J., 1993. Role of Orbital Forcing: A Two-Million-Year Perspective, in: Global changes in the Perspective of the Past / Eddy, J. A., Oeschger, H. (Eds.). John Wiley & Sons, Inc., Hoboken, NJ., 263–277.

Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., Mcintyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., Toggweiler, J. R., 1993. On the structure and origin of major glaciation cycles. Paleoceanography, 8 (6), 699–735.

Karner, D. B. & Muller, R. A., 2000. A Causality Problem for Milankovitch. Science 288, 2143–2144.

Khayrullin, K. Sh., 2016. Vladimir P. Keppen (1846–1940) [Keppen Vladimir Petrovich. K 170-letiyu so dnya rozhdeniya (1846–1940)]. Proc. Voeikov Main Geophys. Lab., 583, 264–270 (in Russian).

Köppen, W. P., 1923. Die Klimate der Erde. Walter de Gruyter, Berlin.

Köppen, W., 1936. Das geographische System der Klimate. Handbuch der Klimatologie. Vol. 1C / Köppen, W., Geiger, R. (Eds.), Borntraeger, Berlin.

Köppen, W., Wegener, A., 1940. The Climates of the Geological Past — Supplements and Corrections, Publ. Gebr. Borntraeger, Berlin.

Köppen, W., Wegener, A., 2015. The Climates of the Geological Past (Die Klimate der geologischen Vorzeit) / Thiede, J., Lochte, K., Dummermuth A. (Eds.). Reprint of the original German edition and complete English translation. Borntraeger Scientific Publishers, Stuttgart.

Ma, C., Meyers, S. R., Sageman, B. B. 2017. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence. Nature 542, 468–470.

Maslin, M., 2016. Forty years of linking orbits to ice ages. Nature 540, 208–210.

Milankovic, M., 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Belgrade, Royal Serbian Acad. Sciences, Spec. Publ. 132, Sect. Math. Nat. Sci., 33, 633.

Berger, A., Crucifix, M., Hodell, D. A., Mangili, C., McManus, J. F., Otto-Bliesner, B., Pol, K., Raynaud, D., Skinner, L. C., Tzedakis, P. C., Wolff, E. W., Yin, Q. Z., Abe-Ouchi, A., Barbante, C., Brovkin, V., Cacho, I., Capron, E., Ferretti, P., Ganopolski, A., Grimalt, J. O., Hönisch, B., Kawamura, K., Landais, A., Margari, V., Martrat, B., Masson-Delmotte V., Mokeddem, Z., Parrenin, F., Prokopenko, A. A., Rashid, H., Schulz, M., Vazquez Riveiros, N., 2016. Interglacials of the last 800,000 years. Rev. Geophys. (AGU). https://doi.org/10.1002/2015RG000482.

Paul, A., Berger, W.H., 1997. Modellierung der Eiszeiten: Klimazyklen und Klimaübergänge. Geowissenschaften 15(1), 20–27.

Penck, A., Brückner, E., 1900. Die Alpen im Eiszeitalter. Tauchnitz, Leipzig.

Rutherford, S. & D’Hondt, S., 2009. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles. Nature 408, 72–75.

Schellenhuber, H. J., 2009. Tipping elements in the Earth System. Proc. Nat. Acad. Sci. USA 106 (no. 49), 20561–20563.

Schulz, M., Berger, W. H., Sarnthein, M., Grootes, P. M., 1999. Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys. Res. Lett. 26 (22), 3385–3388.

Schwarzacher, W., 1993. Cyclostratigraphy and the Milankovitch Theory. Dev. Sediment. 52, Elsevier, Amsterdam, 225.

Schwarzacher, W. & Fischer, A. G., 1982. Limestone-shale bedding and perturbations in the Earth’s orbit, in: Einsele, G. & Seilacher, A.(eds.), Cyclic and Event Stratification, Springer, Berlin, 72–95.

Shackleton, N. J., 2000. The 100,000-Year Ice-Age Cycle identified and found to lag Temperature, Carbon Dioxide, and Orbital Eccentricity. Science 289, 1897–1902.

Shackleton, N. J., Imbrie, J., 1990. The d18O spectrum of oceanic deep water over a five decade band. Climatic Change 16, 217–230.

Seibold, E., 1951. Chemische Untersuchungen zur Bankung im unteren Malm Schwabens. N.Jb. Geol. Paläont. Abh. 95, 338–370.

Sierro, F. J., Ledesma, S., Flores, J.-A., Torrescusa, S., del Olmo, W. M., 2000. Sonic and gamma-ray astrochronology: Cycle to cycle calibration of Atlantic climatic records to Mediterranean sapropels and astronomical oscillations. Geology 28 (8), 695–698.

Summerhayes, C. B., 2015. Earth’s Climate Evolution. J. Wiley and Sons, Ltd., Chichester.

Tetzlaff, G., Lüdecke, C., Behr, H. D. (eds.), 2008. 125 Jahre Deutsche Meteorologische Gesellschaft. Ann. Meteorolog. (DWD) Offenbach., 43, 160.

Thiede, J., Tiedemann, R., 1998. Die Alternative: Natürliche Klimaveränderungen — Umkippen zu einer neuen Kaltzeit, in: Lozán, J. L., Graßl, H. & Hupfer, P. (eds), Warnsignal Klima — Das Klima des 21. Jahrhunderts. Wissenschaftliche Auswertungen/ GEO, Hamburg, 190–196.

Tredakis, P. C., Crucifix, M., Mitsui, T. & Wolff, E. W., 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–432.

Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., Perez-Crus, C., 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology, an overview, in: Einsele, G., Ricken, W., Seilacher, A. (eds.). Cycles and Events in Stratigraphy. Springer, Berlin, 617–659.

Wang, L., Sarnthein, M., Erlenkeuser, H., Grootes, P. M., Grimalt, J. O., Pelejero, C., Linck, G., 1999. Holocene Variations in Asian Monsoon Moisture: A Bidecadal Sediment Record from the South China Sea. Geophys. Res. Lett. 26 (18), 2889–2892.

Wegener, A., 1905. Die Alfonsinischen Tafeln für den Gebrauch eines modernen Rechners, Diss. FriedrichWilhelms-Univ. Berlin, E.Ebering, Berlin.

Wegener, A., 1911. Thermodynamik der Atmosphäre, Leipzig.

Wegener, A., 1912. Neue Ideen über die Herausbildung der Grossformen der Erdoberfläche (Kontinent und Ozeane) auf geophysikalischer Grundlage. Announcement of an oral presentation at the main Annual Meeting of the Geologische Vereinigung, Jan. 6, Frankfurt/Main.

Wegener, A., 2005. Die Entstehung der Kontinente und Ozeane. Reprint of the first (1915) and fourth edition (1929) with handwritten remarks of Alfred Wegener / Krause, R., Schönharting, G., Thiede, J. (Eds.). Gebr. Borntraeger, Stuttgart.

Wegener-Köppen, E., 1955. Wladimir Köppen — ein Gelehrtenleben. Publ. Wissenschaftliche Verlagsgesellschaft m. b. H., Stuttgart.

Downloads

Published

2018-06-01

How to Cite

Тиде, Й. (2018) “Wladimir Köppen, Alfred Wegener, and Milutin Milankovitch: their impact on modern paleoclimate research and the revival of the Milankovitch hypothesis”, Vestnik of Saint Petersburg University. Earth Sciences, 63(2), pp. 230–250. doi: 10.21638/11701/spbu07.2018.207.

Issue

Section

Articles