Филогенетическая биогеография семейства Hamamelidaceae s. l. на основе молекулярно-генетических данных
DOI:
https://doi.org/10.21638/spbu07.2020.201Аннотация
Семейство гамамелисовые (Hamamelidaceae s. l.) включает 27-31 род и около 100 видов и обладает дизъюнктивным ареалом, в который входят отдельные регионы Западной, Южной, Восточной и Юго-Восточной Азии, Северной, Центральной и Южной Америки, Восточной Африки и Северо-Восточной Австралии. В ходе работы были реконструированы филогенетические взаимоотношения между 51 видом из 28 родов Hamamelidaceae s. l. и Itea chinensis (Iteaceae), Paeonia brownii и Paeonia lactiflora (оба Paeoniaceae), Cercidiphyllum japonicum (Cercidiphyllaceae) и Daphniphyllum oldhamii (Daphniphyllaceae) в качестве внешней группы. Филогенетический анализ был проведен с использованием методов максимальной экономии и максимального правдоподобия. Молекулярные данные представлены шестью последовательностями, из которых одна последовательность относится к ядерной ( ITS-5 . 8S rRNA ), а пять - к хлоропластной ( matK , rbcL , trnL-trnF , psaA-ycf3 , psbA-trnH ) ДНК. Полученные данные указывают, что Hamamelidaceae s. l. образует парафилетическую группу, тогда как Altingiaceae и Hamamelidaceae s. s. монофилетичны. На основании филогении и палеоботанических данных была предложена модель расселения Hamamelidaceae s. l. Семейство Altingiaceae обособилось на территории Северной Америки около 95 млн лет назад и сперва расселилось по Берингийскому мосту в Восточную Азию, а затем по Североатлантическому мосту - в Европу. Семейство Hamamelidaceae s. s. сформировалось около 90 млн лет назад на территории современной Европы и имеет сложную биогеографическую историю, которая включает заселение Африки и Мадагаскара, Австралии и 4 независимых случая заселения Северной Америки таксонами из разных триб подсемейства Hamamelidoideae.
Ключевые слова:
алтингиевые (Altingiaceae), биогеография, время дивергенции, гамамелисовые (Hamamelidaceae), дизъюнктивный ареал, история расселения, филогения
Скачивания
Библиографические ссылки
APG (1998). An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden, 85 (4), 531-553. https://doi.org/10.2307/2992015
APG II (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 114 (4), 399-436. https://doi. org/10.1046/j.1095-8339.2003.t01-1-00158.x
APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161 (2), 105-121. https://doi. org/10.1111/j.1095-8339.2009.00996.x
APG IV (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181 (1), 1-20. https://doi. org/10.1111/boj.12385
Benedict, J. C., Pigg, K. B. and DeVore, M. L. (2008). Hamawilsonia boglei gen. et sp. nov. (Hamamelidaceae) from the late Paleocene Almont flora of central North Dakota. International Journal of Plant Sciences, 169 (5), 687-700. https://doi.org/10.1086/533607
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. and Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41 (D1), D36-D42. https://doi.org/10.1093/nar/gks1195
Bessey, C. E. (1915). The phylogenetic taxonomy of flowering plants. Annals of the Missouri Botanical Garden, 2 (1-2), 109-164. https://doi.org/10.2307/2990030
Bouckaert, R, Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M. A., Wu, C.-H, Xie, D., Zhang, C., Stadler, T. and Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15 (4), e1006650. https://doi. org/10.1371/journal.pcbi.1006650
Brikiatis, L. (2014). The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. Journal of Biogeography, 41 (6), 1036-1054. https://doi.org/10.1111/jbi.12310
Brikiatis, L. (2016). Late Mesozoic North Atlantic land bridges. Earth-Science Reviews, 159, 47-57. https:// doi.org/10.1016/j.earscirev.2016.05.002
Brundin, L. Z. (1988). Phylogenetic biogeography. In: A. A. Myers, P. S. Giller, ed., Analytical biogeography: an integrated approach to the study of animal and plant distributions. London and New York: Chapman and Hall, 343-369.
Christenhusz, M. J. and Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261 (3), 201-217. https://doi.org/10.11646/phytotaxa.261.3.1
Cohen, K. M., Finney, S. C., Gibbard, P. L. and Fan, J.-X. (2013). The ICS International Chronostratigraphic Chart. Episodes, 36 (3), 199-204.
Cohen, K. M., Harper, D. A. T., Gibbard, P. L. and Fan, J.-X. (2018). International Chronostratigraphic Chart. International Commission on Stratigraphy.
Cox, C. B., Moore, P. D. and Ladle, R. J. (2016). Biogeography: An Ecological and Evolutionary Approach. Hoboken: Wiley-Blackwell.
Crame, J. A. (1994). Evolutionary History of Antarctica. In: G. Hempel, ed., Antarctic Science. Berlin and Heidelberg: Springer, 188-214.
Crisci, J. V., Katinas, L. and Posadas, P. (2003). Historical biogeography: an introduction. Cambridge: Harvard University Press.
Cronquist, A. (1981). An integrated system of classification of flowering plants. New York: Columbia University Press.
Dong, J., Sun, B., Mao, T., Yan, D., Liu, C., Wang, Z. and Jin, P. (2018). Liquidambar (Altingiaceae) and associated insect herbivory from the Miocene of southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 497, 11-24. https://doi.org/10.1016/j.palaeo.2018.02.001
Donoghue, M. J., Bell, C. D. and Li, J. (2001). Phylogenetic patterns in Northern Hemisphere plant geography. International Journal of Plant Sciences, 19 (S6), S41-S52. https://doi.org/10.1086/323278
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5), 1792-1797. https://doi.org/10.1093/nar/gkh340
Eichler, A. W. (1876). Syllabus der Vorlesungen über Phanerogamenkunde. Kiel: Schwers‘sche Buchhandlung.
Endress, P. K. (1970). Die Infloreszenzen der apetalen Hamamelidaceen, ihre grundsätzliche morphologische und systematische Bedeutung. Botanische Jahrbücher für Systematik, 90, 1-54.
Endress, P. K. (1989). A suprageneric taxonomic classification of the Hamamelidaceae. Taxon, 38 (8), 371- 376. https://doi.org/10.2307/1222267
Endress, P. K. (1993). Hamamelidaceae. In: K. Kubitzki, J. G. Rohwer, V. Bittrich, ed., The families and genera of vascular plants. Vol. 2. Flowering Plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid Families. Berlin, Heidelberg and New York: Springer-Verlag, 322-331.
Engler, A. (1892). Syllabus der Vorlesungen über specielle und medicinisch-pharmaceutische Botanik. Eine Uebersicht über das gesammte Pflanzensystem mit Berücksichtigung der Medicinalund Nutzpflanzen. Berlin: Gebrüder Borntraeger.
Farris, J. S. (1970). Methods for computing Wagner trees. Systematic Zoology, 19 (1), 83-92. https://doi. org/10.1093/sysbio/19.1.83
Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17 (6), 368-376. https://doi.org/10.1007/BF01734359
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Feng, Y.-X., Chen, Z.-D., Wang, X.-Q., Pan, K.-Y. and Hong, D.-Y. (1999). A taxonomic revision of the Loropetalum-Tetrathyrium complex and its systematic position in the Hamamelidoideae, based on morphology and ITS sequence data. Taxon, 48 (4), 689-700. https://doi.org/10.2307/1223640
Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology.
Systematic Zoology, 20 (4), 406-416. https://doi.org/10.1093/sysbio/20.4.406
GenBank (2013). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. [online] Available at: https://www.ncbi.nlm.nih.gov/genbank/ [Accessed 25 Mar. 2019].
Gernhard, T. (2008). The conditioned reconstructed process. Journal of Theoretical Biology, 253 (4), 769- 778. https://doi.org/10.1016/j.jtbi.2008.04.005
Graham, A. (2018). The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. Journal of Systematics and Evolution, 56 (5), 405-429. https://doi.org/10.1111/ jse.12302
Hao, R. and Wei, H. (1998). A new combination in Hamamelidaceae. Acta Phytotaxonomica Sinica, 36 (1), 80.
Hao, R., Wei, H. and Liu, W. (1996). Floral morphology of Shaniodendron (Hamamelidaceae) and its taxonomic significance. Journal of Plant Resources and Environment, 5 (1), 38-42.
Heads, M. (2012). Molecular Panbiogeography of the Tropics. Berkeley: University of California Press.
Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.
Hermsen, E. J., Nixon, K. C. and Crepet, W. L. (2006). The impact of extinct taxa on understanding the early evolution of angiosperm clades: an example incorporating fossil reproductive structures of Saxifragales. Plant Systematics and Evolution, 260 (2-4), 141-169. https://doi.org/10.1007/s00606-006-0441-x
Hewson, H. J. (1989). Hamamelidaceae. In: A. S. George, ed., Flora of Australia. Vol. 3. Hamamelidales to Casuarinales. Canberra: Australian Government Publishing Service, 1-4.
Huang, J., Shi, G.-L., Su, T. and Zhou, Z.-K. (2017). Miocene Exbucklandia (Hamamelidaceae) from Yunnan, China and its biogeographic and palaeoecologic implications. Review of Palaeobotany and Palynology, 244, 96-106. https://doi.org/10.1016/j.revpalbo.2016.10.004
Hutchinson, J. (1969). Evolution and phylogeny of flowering plants. Dicotyledons: facts and theory. London and New York: Academic Press.
Ickert-Bond, S. M., Pigg, K. B. and Wen, J. (2005). Comparative infructescence morphology in Liquidambar (Altingiaceae) and its evolutionary significance. American Journal of Botany, 92 (8), 1234-1255. https://doi.org/10.3732/ajb.92.8.1234
Ickert-Bond, S. M., Pigg, K. B. and Wen, J. (2007). Comparative infructescence morphology in Altingia (Altingiaceae) and discordance between morphological and molecular phylogenies. American Journal of Botany, 94 (7), 1094-1115. https://doi.org/10.3732/ajb.94.7.1094
Ickert-Bond, S. M. and Wen, J. (2006). Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Molecular Phylogenetics and Evolution, 39 (2), 512-528. https://doi.org/10.1016/j.ympev.2005.12.003
Ickert-Bond, S. M. and Wen, J. (2013). A taxonomic synopsis of Altingiaceae with nine new combinations.
PhytoKeys, 31, 21-61. https://doi.org/10.3897/phytokeys.31.6251
Judd, W. S., Campbell, C. S., Kellog, E. A., Stevens, P. F. and Donoghue, M. J. (2015). Plant systematics: A phylogenetic approach. Sunderland: Sinauer Associates.
Jukes, T. H. and Cantor, C. R. (1969). Evolution of protein molecules. In: H. N., Munro, ed., Mammalian protein metabolism. Vol. 3. New York and London: Academic Press, 21-132.
Knobloch, E. and Mai, D. H. (1986). Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Prague: Ústřední Ústav Geologický Academii.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35 (6), 1547-1549. https://doi. org/10.1093/molbev/msy096
Lai, Y.-J., Li, S.-J. and Wang, W.-M. (2018). Evolutionary trends in leaf morphology and biogeography of Altingiaceae based on fossil evidence. Palaeoworld, 27 (3), 415-422. https://doi.org/10.1016/j.palwor.2018.06.002
Li, J. (1997). Systematics of the Hamamelidaceae based on morphological and molecular evidence. Dr. Sci. University of New Hampshire.
Li, J. (2008). Molecular phylogenetics of Hamamelidaceae: evidence from DNA sequences of nuclear and chloroplast genomes. In: A. K. Sharma, A. Sharma, ed., Plant genome: biodiversity and evolution. Vol. 1e. Phanerogams - Angiosperm. Enfield, Jersey and Plymouth: Science Publishers, 227-250.
Li, J. and Bogle, A. L. (2001). A new suprageneric classification system of the Hamamelidoideae based on morphology and sequences of nuclear and chloroplast DNA. Harvard Papers in Botany, 5 (2), 499-515.
Li, J., Bogle, A. L. and Donoghue, M. J. (1999a). Phylogenetic relationships in the Hamamelidoideae in- ferred from sequences of trn non-coding regions of chloroplast DNA. Harvard Papers in Botany, 4 (1), 343-356.
Li, J., Bogle, A. L. and Klein, A. S. (1999b). Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. American Journal of Botany, 86 (7), 1027-1037.
Li, J., Bogle, A. L. and Klein, A. S. (1999c). Phylogenetic relationships in the Hamamelidaceae: Evidence from the nucleotide sequences of the plastid gene matK. Plant Systematics and Evolution, 218 (3-4), 205-219.
Li, J., Bogle, A. L., Klein, A. S. and Donoghue, M. J. (2000). Phylogeny and biogeography of Hamamelis (Hamamelidaceae). Harvard Papers in Botany, 5 (1), 171-178.
Li, J., Bogle, A. L., Klein, A. S. and Pan, K.-Y. (1997). Close relationship between Shaniodendron and Parrotia (Hamamelidaceae), evidence from its sequences of nuclear ribosomal DNA. Acta Phytotaxonomica Sinica, 35 (6), 481-493.
Magallón, S., Herendeen, P. S. and Crane, P. R. (2001). Androdecidua endressii gen. et sp. nov., from the Late Cretaceous of Georgia (United States): further floral diversity in Hamamelidoideae (Hamamelidaceae). International Journal of Plant Sciences, 162 (4), 963-983. https://doi.org/10.1086/320770
Magallon-Puebla, S., Herendeen, P. S. and Endress, P. K. (1996). Allonia decandra: Floral remains of the tribe Hamamelideae (Hamamelidaceae) from Campanian strata of southeastern USA. Plant Systematics and Evolution, 202 (3-4), 177-198. https://doi.org/10.1007/BF00983381
Mai, D. H. (2001). The fossils of Rhodoleia Champion (Hamamelidaceae) in Europe. Acta Palaeobotanica, 41 (2), 161-176.
Manchester, S. R. (1999). Biogeographical relationships of North American tertiary floras. Annals of the Missouri Botanical Garden, 86 (2), 472-522. https://doi.org/10.2307/2666183
Martinetto, E. (1998). East Asian elements in the Plio-Pleistocene floras of Italy. In: A. Zhang, W. Sugong, ed., Proceedings of the International Symposium on Floristic Character Diversity of East Asian Plants. Berlin: Springer Verlag, 71-87.
Maslova, N. P. (1995). Genus Parrotiopsis (Niedz.) Schneid. (Hamamelidaceae R. Brown) - The First Record in the Tertiary from Eastern Asia. Paleontological Journal, 29 (2A), 159-166.
Maslova, N. P. (2010). Systematics of fossil platanoids and hamamelids. Paleontological Journal, 44 (11), 1379-1466. https://doi.org/10.1134/S0031030110110018
Maslova, N. P., Kodrul, T. M., Herman, A. B., Tu, M., Liu, X. and Jin, J. (2019). A new species of Liquidambar (Altingiaceae) from the late Eocene of South China. Journal of Plant Research, 132 (2), 223-236. https://doi.org/10.1007/s10265-019-01091-0
Maslova, N. P., Kodrul, T. M., Song, Y., Volkova, L. D. and Jin, J. (2015). Liquidambar maomingensis sp. nov. (Altingiaceae) from the late Eocene of South China. American Journal of Botany, 102 (8), 1356-1370. https://doi.org/10.3732/ajb.1500019
McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49 (3), 271-300.
Melikian, A. P. (1973). The anatomy of seed coat and systematics of the family Hamamelidaceae. Biologicheskii zhurnal Armenii, 26 (3), 104-105. (In Russian)
Meyer, F. G. (1997). Hamamelidaceae. In: Flora of North America Editorial Committee, ed., Flora of North America: North of Mexico. Vol. 3. Magnoliophyta: Magnoliidae and Hamamelidae. New York and Oxford: Oxford University Press, 362-367.
Morrone, J. J. (2008). Evolutionary biogeography: An integrative approach with case studies. New York: Columbia University Press.
Morrone, J. J. and Crisci, J. V. (1995). Historical biogeography: introduction to methods. Annual Review of Ecology and Systematics, 26 (1), 373-401. https://doi.org/10.1146/annurev.es.26.110195.002105
Okonechnikov, K., Golosova, O. and Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28 (8), 1166-1167. https://doi.org/10.1093/bioinformatics/bts091
Oskolski, A. A., Kodrul, T. M. and Jin, J. (2012). Altingioxylon hainanensis sp. nov.: earliest fossil wood record of the family Altingiaceae in Eastern Asia and its implications for historical biogeography. Plant Systematics and Evolution, 298 (3), 661-669. https://doi.org/10.1007/s00606-011-0575-3
Pigg, K. B., Ickert-Bond, S. M. and Wen, J. (2004). Anatomically preserved Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. American Journal of Botany, 91 (3), 499-509. https://doi.org/10.3732/ajb.91.3.499
Qiu, Y.-L., Chase, M. W., Hoot, S. B. and Conti, E. (1998). Phylogenetics of the Hamamelidae and their allies: parsimony analyses of nucleotide sequences of the plastid gene rbc L. International Journal of Plant Sciences, 159 (6), 891-905. https://doi.org/10.1086/314084
Radtke, M. G., Pigg, K. B. and Wehr, W. C. (2005). Fossil Corylopsis and Fothergilla leaves (Hamamelidaceae) from the lower Eocene flora of Republic, Washington, USA, and their evolutionary and biogeographic significance. International Journal of Plant Sciences, 166 (2), 347-356. https://doi.org/10.1086/427483
Rakotobe, E. A. (1996). Le genre endemique malgache Dicoryphe Du Petit-Thouars (Hamamelidaceae): repartition et phytogeographie. In: W. R. Lourenço, ed., Biogeographie de Madagascar. Paris: ORSTOM, 177-182.
Rannala, B. and Yang, Z. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43 (3), 304-311. https://doi.org/10.1007/ BF02338839
Rendle, A. B. (1904). The classification of flowering plants. Vol. 2. Dicotyledons. Cambridge: University Press.
Shatilova, I., Rukhadze, L. and Kokolashvili, I. (2016). Representatives of the family Hamamelidaceae in Neogene of Georgia. Tbilisi: Georgian National Museum.
Shatilova, I. I. and Stuchlik, L. (1999). Palaeobotanical data to the history of the family Hamamelidaceae. Acta Palaeobotanica, 2, 649-651.
Shi, S., Chang, H. T., Chen, Y., Qu, L. and Wen, J. (1998). Phylogeny of the Hamamelidaceae based on the ITS sequences of nuclear ribosomal DNA. Biochemical Systematics and Ecology, 26 (1), 55-69. https:// doi.org/10.1016/S0305-1978(97)00075-6
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D. and Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7 (1), 539. https://doi. org/10.1038/msb.2011.75
Stevens, P. F. (2017). Angiosperm Phylogeny Website. Version 14. [online] Available at: http://www.mobot. org/MOBOT/research/APWeb/ [Accessed 16 Apr. 2019].
Swofford, D. L. and Bell, C. D. (2017). PAUP* manual. [online] Available at: https://phylosolutions.com/ paup-documentation/paupmanual.pdf [Accessed 1 Jun. 2019].
Takhtajan, A. L. (1966). System and phylogeny of flowering plants. Moscow and Leningrad: Nauka Publ. (In Russian)
Takhtajan, A. L. (1980). Witch-hazel family (Hamamelidaceae). In: A. L. Takhtajan, ed., Zhizn’ rastenii. V 6-ti t. T. 5. Ch. 1. Tsvetkovye rasteniia. Moscow: Prosveshchenie Publ., 235-242. (In Russian)
Takhtajan, A. L. (1987). System of Magnoliophyta. Leningrad: Nauka Publ. (In Russian)
Takhtajan, A. L. (1997). Diversity and classification of flowering plants. New York: Columbia University Press.
Takhtajan, A. L. (2009). Flowering plants. Springer Science+Business Media.
Tamura, K. and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10 (3), 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
Tank, D. C., Eastman, J. M., Pennell, M. W., Soltis, P. S., Soltis, D. E., Hinchliff, C. E., Brown, J. W., Sessa, E. B. and Harmon, L. J. (2015). Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytologist, 207 (2), 454-467. https:// doi.org/10.1111/nph.13491
Tiffney, B. H. (1985). The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum, 66 (2), 243-273.
van Veller, M. G. P., Brooks, D. R. and Zandee, M. (2003). Cladistic and phylogenetic biogeography: the art and the science of discovery. Journal of Biogeography, 30 (3), 319-329. https://doi.org/10.1046/j.1365- 2699.2003.00808.x
Vink, W. (1957). Hamamelidaceae. In: C. G. G. J. van Steenis, ed., Flora Malesiana. Ser. I. Vol. 5. Djakarta: Noordhoff-Kolff N. V., 363-379.
Walther, H. (1980). Matudaea menzelii Walther, ein neues neotropisches Geoelement in der Tertiärflora Mitteleuropas. Flora, 170 (5-6), 498-516. https://doi.org/10.1016/S0367-2530(17)31236-7
Wen, J. and Shi, S. (1999). A phylogenetic and biogeographic study of Hamamelis (Hamamelidaceae), an eastern Asian and eastern North American disjunct genus. Biochemical Systematics and Ecology, 27 (1), 55-66. https://doi.org/10.1016/S0305-1978(98)00067-2
Wettstein, R. (1924). Handbuch der Systematischen Botanik. Leipzig: Franz Deuticke.
Wiley, E. O. and Lieberman, B. S. (2011). Phylogenetics: theory and practice of phylogenetic systematics. Hoboken: Wiley-Blackwell.
Wu, J., Sun, B., Liu, Y.-S., Xie, S. and Lin, Z. (2009). A new species of Exbucklandia (Hamamelidaceae) from the Pliocene of China and its paleoclimatic significance. Review of Palaeobotany and Palynology, 155 (1-2), 32-41. https://doi.org/10.1016/j.revpalbo.2008.12.015
Wu, J., Zhao, Z., Li, Q., Liu, Y., Xie, S., Ding, S. and Sun, B. (2015). A new species of Rhodoleia (Hamamelidaceae) from the upper Pliocene of West Yunnan, China and comments on phytogeography and insect herbivory. Acta Geologica Sinica, 89 (5), 1440-1452. https://doi.org/10.1111/1755-6724.12556
Xie, L., Yi, T.-S., Li, R., Li, D.-Z. and Wen, J. (2010). Evolution and biogeographic diversification of the witchhazel genus (Hamamelis L., Hamamelidaceae) in the Northern Hemisphere. Molecular Phylogenetics and Evolution, 56 (2), 675-689. https://doi.org/10.1016/j.ympev.2010.02.018
Yang, Z. and Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Molecular Biology and Evolution, 14 (7), 717-724. https://doi.org/10.1093/oxfordjournals.molbev.a025811
Zhang, Z.-Y. and Lu, A.-M. (1995). Hamamelidaceae: geographic distribution, fossil history and origin. Acta Phytotaxonomica Sinica, 33 (4), 313-339.
Zhang, Z.-Y., Zhang, H. and Endress, P. K. (2003). Hamamelidaceae. In: Z. Wu, P. H. Raven, ed., Flora of China. Vol. 9. Pittosporaceae through Connaraceae. St. Louis: Science Press; Beijing: Missouri Botanical Garden Press, 18-42.
Zhao, L.-C. and Li, D.-Y. (2008). Anatomically preserved seeds of Corylopsis (Hamamelidaceae) from the Miocene of Yunnan, China, and their phytogeographic implications. International Journal of Plant Sciences, 169 (3), 483-494. https://doi.org/10.1086/526461
Zheng, Y. and Wiens, J. J. (2015). Do missing data influence the accuracy of divergence-time estimation with BEAST? Molecular Phylogenetics and Evolution, 85, 41-49. https://doi.org/10.1016/j.ympev.2015.02.002
Zhou, Z.-K., Crepet, W. L. and Nixon, K. C. (2001). The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescences and fruits of Altingioideae. American Journal of Botany, 88 (5), 753-766. https://doi.org/10.2307/2657028
Zuckerkandl, E. and Pauling, L. B. (1962). Molecular disease, evolution, and genetic heterogeneity. In: M. Kasha, B. Pullman, ed., Horizons in Biochemistry. New York: Academic Press, 189-225.
Загрузки
Дополнительные файлы
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Науки о Земле» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.