Моделирование процессов смешения расплавов перидотитового и мафического субстратов на малых глубинах континентальной метасоматизированной литосферной мантии. К вопросу о генезисе раннемелового вулканизма Восточной Монголии

Авторы

  • Максим Викторович Кузнецов Институт геологии и геохронологии докембрия Российской академии наук, Российская Федерация, 199034, Санкт-Петербург, наб. Макарова, 2 https://orcid.org/0000-0002-4532-2711
  • Валерий Михайлович Саватенков Институт геологии и геохронологии докембрия Российской академии наук, Российская Федерация, 199034, Санкт-Петербург, наб. Макарова, 2; Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., 7–9 https://orcid.org/0000-0003-3024-4164

DOI:

https://doi.org/10.21638/spbu07.2023.309

Аннотация

Восточно-Монгольская вулканическая область сформировалась в позднем мезозое–раннем кайнозое в пределах Центрально-Азиатского складчатого пояса. Основные вулканические события в области произошли в раннем мелу, когда щелочно-базальтоидные лавы сформировали так называемый покровный вулканический комплекс. Изотопно-геохимические особенности данного комплекса позволили исследователям установить следующие мантийные породы в качестве его источника: метасоматизированные перидотиты, эклогиты и пироксениты. Чтобы определить, действительно ли одновременное плавление данных пород с последующими процессами кристаллизационной дифференциации могло привести к формированию вулканитов, было проведено термодинамическое моделирование в программе alphaMELTS. Результаты моделирования свидетельствуют о том, что плавление наиболее обогащенных несовместимыми редкими элементами перидотитов, эклогитов и пироксенитов не могло формировать расплавы покровного вулканического комплекса. В то же время, процессы смешения расплавов перидотитов и эклогитов в наибольшей степени соответствуют механизму формирования вулканитов. Однако обогащение вулканических пород Ti, K, P, Rb и Sr по отношению к моделируемым расплавам требует участия в процессах магмогенерации мантийных метасоматических жил, обогащенных рутилом, апатитом, флогопитом и амфиболом.

Ключевые слова:

Восточная Монголия, раннемеловой вулканизм, термодинамическое моделирование, эклогиты, пироксениты, мантийные метасоматические жилы

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Aqua-Calc (2023). [online] Available at: https://www.aqua-calc.com/calculate/volume-to-weight/substance/granite-coma-and-blank-solid [Accessed 05.04.2023].

Ancuta, L. (2017). Toward an Improved Understanding of Intraplate Uplift and Volcanism: Geochronology and Geochemistry of Intraplate Volcanic Rocks and Lower-Crustal Xenoliths. PhD thesis. Lehigh University, Bethlehem.

Arzhannikova, A. V., Demonterova, E. I., Jolivet, M., Mikheeva, E. A., Ivanov, A. V., Arzhannikov, S. S., Khubanov, V. B., Kamenetsky, V. S. (2022). Segmental closure of the Mongol-Okhotsk Ocean: Insight from detrital geochronology in the East Transbaikalia Basin. Geoscience Frontiers, 13 (1), 1674-9871. https://doi.org/10.1016/j.gsf.2021.101254

Asimow, P. and Ghiorso, M. (1998). Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist., 83 (9-10), 1127-1132. https://doi.org/10.2138/am-1998-9-1022

Badarch, G., Cunningham, D., Windley, B. (2002). A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J. Asian Earth Sciences, 21, 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2

Barry, T., Saunders, A., Kempton, P., Windley, B., Pringle, M., Dorjnamjaa, D., Saandar, S. (2003). Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. J. Petrology, 44 (1), 55-91. https://doi.org/10.1093/petrology/44.1.55

Bars, А., Miao L., Fochin, Z., Baatar, M., Anaad, C., Togtokh, K. (2018). Petrogenesis and tectonic implication of the Late Mesozoic volcanic rocks in East Mongolia. Willey Geology J., 53 (6), 1-22. https://doi.org/10.1002/gj.3080

Becker, H., Wenzel, T., Volker, F. (1999). Geochemistry of glimmerite veins in peridotites from Lower Austria - implications for the origin of K-rich magmas in collision zones. J. Petrology, 40 (2), 315-338. https://doi.org/10.1093/petroj/40.2.315

Bédard, J. A. (2006). A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70 (5), 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008

Bédard, J., Troll, V., Deegan, F., Tegner, C., Saumur, B., Evenchick, C., Grasby, S., Dewing, K. (2021). High Arctic Large Igneous Province Alkaline Rocks in Canada: Evidence for Multiple Mantle Components. J. Petrology, 62 (9). https://doi.org/10.1093/petrology/egab042

Berman, R. G. (1988).Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrology, 29 (2), 445-522. https://doi.org/10.1093/petrology/29.2.445

Carlson, R. and Ionov, D. (2019).Compositional characteristics of the MORB mantle and bulk silicate earth based on spinel peridotites from the Tariat Region, Mongolia. Geochimica et Cosmochimica Acta, 257, 206-223. https://doi.org/10.1016/j.gca.2019.05.010

Condamine, P. and Médard, E. (2014). Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary Sciences Lett., 397, 80-92. https://doi.org/10.1016/j. epsl.2014.04.027

Daoudene, Y., Ruffet, G., Cocherie, A., Ledru, P., Gapais, D. (2013). Timing of exhumation of the Ereendavaa metamorphic core complex (north-eastern Mongolia) - U-Pb and 40Ar/39Ar constraints. J. Asian Earth Sciences, 62, 98-116. https://doi.org/10.1016/j.jseaes.2011.04.009

Dasgupta, R., Hirschmann, M. M., Smith, N. D. (2007). Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrology, 48 (11), 2093-2124. https://doi:10.1093/petrology/egm053

Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., Hirschmann, M. M. (2013). Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493 (7431), 211-215. https://doi:10.1038/nature11731

Dash, B., Yinb, A., Jiang, N., Tseveendorj, B., Han, B. (2015). Petrology, structural setting, timing, and geochemistry of Cretaceous volcanic rocks in eastern Mongolia: Constraints on their tectonic origin. Gondwana Research, 27, 281-299. https://doi.org/10.1016/j.gr.2013.10.001

Farmer, G. L., Fritz, D. E., Glazner, A. F. (2020). Identifying Metasomatized Continental Lithospheric Mantle Involvement in Cenozoic Magmatism From Ta/Th Values, Southwestern North America. Geochemistry, Geophysics Geosystems, 21, e2019GC008499. https://doi.org/10.1029/2019GC008499

Gale, A., Dalton, C., Langmuir, C., Su, Y., Schilling, J.-G. (2013). The mean composition of ocean ridge basalts. Geochemistry Geophysics. Geosystems, 14, 489-518. https://doi.org/10.1029/2012GC004334

Ghiorso, M. and Sack, R. (1995). Chemical Mass-Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated-Temperatures and Pressures. Contrib. Mineral. Petrol., 119 (2-3), 197-212. https://doi.org/10.1007/BF00307281

Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W., Kress, V. C. (2002). The pMELTS: A revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry Geophysics Geosystems, 3 (5). https://doi.org/10.1029/2001GC000217

Gianola, O., Schmidt, M., Jagoutz, O., Rickli, J., Bruguier, O., Sambuu, O. (2019). The Crust-Mantle Transition of the Khantaishir Arc Ophiolite (Western Mongolia). J. Petrology, 60 (4), 673-700. https://doi.org/10.1093/petrology/egz009

Green, D., Hibberson, W., Rosenthal, A., Kovacs, I., Yaxley, G., Falloon, T., Brink, F. (2014). Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrology, 55, 2067-2096. https://doi.org/10.1093/petrology/egu050

Hamza, V. and Vieira, F. (2012). Global distribution of the lithosphere-asthenosphere boundary: a new look. Solid Earth, 3, 199-212. https://doi.org/10.5194/se-3-199-2012

Hirose, K. (1997). Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in akali-basalt magma generation. Geophysical Research Lett., 24 (22), 2837-2840. https://doi.org/doi:10.1029/97gl02956

Hirschmann, M., Tenner, T., Aubaud, C., Withers, A. (2009). Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Physics of the Earth and Planetary Interiors, 176, 54-68. https://doi.org/10.1016/j.pepi.2009.04.001

Javoy, M. (1997) The major volatile elements of the Earth: Their origin, behavior, and fate. Geophysical Research Lett., 24 (2), 177-180. https://doi.org/10.1029/96GL03931

Katayama, I., Nakashima, S., Yurimoto, H. (2006). Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos, 86 (3-4), 245-259. https://doi.org/10.1016/j.li- thos.2005.06.006

Kelley, K., Plank, T., Newman, S., Stolper, E., Grove, T., Parman, S., Hauri, E. (2010). Mantle Melting as a Function of Water Content beneath the Mariana Arc. J. Petrology, 51 (8), 1711-1738. https://doi:10.1093/petrology/egq036

Klemme, S., Blundy, J., Wood, B. (2002). Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 66, 3109-3123. https://doi.org/10.1016/S0016-7037(02)00859-1

Kolb, M., Paulick, H., Kirchenbaur, M., Münker, C. (2012). Petrogenesis of mafic to felsic lavas from the Oligocene Siebengebirge volcanic field (Germany): implications for the origin of intracontinental volcanism in Central Europe. J. Petrology, 53, 2349-2379. https://doi.org/10.1093/petrology/egs053

Kononova, V., Kurat, G., Embey-Isztin, A., Petrov, V. A., Koeberl, C., Brandstatter, F. (2002). Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau, South-eastern Mongolia. Mineralogy and Petrology, 75, 1-21. https://doi.org/10.1007/s007100200012

Kontak, D., Jensen, S., Dostal, J., Archibald, D., Kyser, T. (2001). Cretaceous mafic dyke swarm, Peary Land, Northernmost Greenland: geochronology and petrology. The Canadian Mineralogist, 39, 997-1020. https://doi.org/10.2113/gscanmin.39.4.997

Kourim, F., Wang, K.-L., Beinlich, A., Chieh, C.-J., Dygert, N., Lafay, R., Kovach, V., Michibayashi, K., Yarmolyuk, V., Iizuka, Y. (2021). Metasomatism of the off-cratonic lithospheric mantle beneath Hangay Dome, Mongolia: Constraints from trace-element modeling of lherzolite xenoliths. Lithos, 400-401. https://doi.org/10.1016/j.lithos.2021.106407

Kuznetsov, M. V., Savatenkov, V. M., Shpakovich, L. V., Yarmolyuk, V. V., Kozlovsky, A. M. (2022). Evolution of the Magmatic Sources of the Eastern Mongolian Volcanic Area: Evidence from Geochemical and Sr-Nd-Pb Isotope Data. J. Petrology, 30 (5), 457-479. https://doi.org/10.1134/S0869591122050034

Kuznetsov, M. V., Savatenkov, V. M., Sheldrick, T., Shpakovich, L. V. (2023). Early Cretaceous trachytes and basement rocks from northeastern Mongolia: A Sr-Nd-Pb isotope study. Frontiers of Earth Science 11:1156559. https://doi.org/10.3389/feart.2023.1156559

Lambart, S., Laporte, D., Provost, A., Schiano, P. (2012). Fate of pyroxenite-derived melts in the peridotitic mantle: Thermodynamical and experimental constraints. J. Petrology 53 (3), 451-476. https://doi.org/10.1093/petrology/egr068

Lambart, S., Laporte, D., Schiano, P. (2013). Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos, 160-161, 14-36. https://doi.org/10.1016/j.lithos.2012.11.018

Lambart, S., Baker, M. B., Stolper, E. M. (2016). The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J. Geophysical Research: Solid Earth, 121, 5708-5735. https://doi.org/10.1002/2015JB012762

Lesnov, F. P., Kozmenko, O. A., Nikolaeva, I. V., Palesskii, S. V. (2009). Residence of incompatible trace elements in a large spinel lherzolite xenolith from alkali basalt of Shavaryn Tsaram-1 paleovolcano (western Mongolia).Russian Geology and Geophysics, 50 (12), 1063-1072. https://doi.org/10.1016/j.rgg.2009.11.005

Mallik, A. and Dasgupta, R. (2014). Effect of variable CO2 on eclogite derived andesite and lherzolite reaction at 3 GPa - Implications for mantle source characteristics of alkalic ocean island basalts. Geochemistry Geophysics. Geosystems, 15, 1533-1557. https://doi.org/10.1002/2014GC005251

McKenzie, D. and O’Nions, R. K. (1991). Partial melt distributions from inversion of rare Earth element concentrations. J. Petroogy, 32, 1021-1091. https://doi.org/10.1093/petrology/32.5.1021

McKenzie, D. and O’Nions, R. K. (1995). The Source Regions of Ocean Island Basalts. J. Petrology, 36, 133-159. https://doi.org/10.1093/petrology/36.1.133

Meng, Q. R. (2003). What drove late Mezosoic extension of the northern China-Mongolia tract? Tectonophysics, 369 (3-4), 155-174. https://doi.org/10.1016/S0040-1951(03)00195-1

Miao, L., Zhang, F., Baatar, M., Zhu, M., Anaad, C. (2017). SHRIMP zircon U-Pb ages and tectonic implications of igneous events in the Ereendavaa metamorphic terrane in NE Mongolia. J. Asian Earth Sciences, 144, 243-260. https://doi.org/10.1016/j.jseaes.2017.03.005

O’Reilly, S. and Griffin, W. (2013). Mantle Metasomatism. In: D. Harlov, J. Austrheim, ed., Metasomatism and the Chemical Transformation of Rock. Heidelberg: Springer, 471-534.

Pearce, J., Stern, R., Bloomer, S., Fryer, P. (2005). Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry Geophysics. Geosystems, 6, Q07006. https://doi.org/10.1029/2004GC000895

Peretyazhko I. S., Savina E. A., Dril’ S. I. (2018). Early Cretaceous trachybasalt-trachyte-trachyrhyolitic volcanism in the Nyalga basin (Central Mongolia): sources and evolution of continental rift magmas. Russian Geology. Geophysics, 59 (12), 1679-1701. https://doi.org/10.1016/j.rgg.2018.12.011

Pertermann, M. and Hirschmann, M. (2003). Anhydrous Partial Melting Experiments on MORB-like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. J. Petrology, 44 (12), 2173-2201. https://doi.org/10.1093/petrology/egg074

Pilet, S., Baker, M., Stolper, E. (2008). Metasomatized lithosphere and the origin of alkaline lavas. Science, 320 (5878), 916-919. https://doi/10.1126/science.1156563

Qian, Q. and Hermann, J. (2013). Partial melting of lower crust at 10-15 kbar: Constraints on adakite and TTG formation. Contrib. Mineral. Petrol., 165, 1195-1224. https://doi.org/10.1007/s00410-013-0854-9

Radu, I. (2018). Cratonic eclogite xenoliths - formation and evolution of the subcontinental lithospheric mantle. PhD thesis. University of Cape Town.

Ragozin, A. L., Karimova, A. A., Litasov, K. D., Zedgenizov, D. A., Shatsky, V. S. (2014). Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites (Yakutia).Russian Geology Geophysics, 55 (4), 428-442, https://doi.org/10.1016/j.rgg.2014.03.002

Saktura, W., Buckman, S., Nutman, A., Belousova, E., Yan, Z., Aitchison, J. (2017). Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 294-295, 20-38. https://doi.org/10.1016/j.lithos.2017.10.004

Sheldrick, T. C., Barry, T. L., Millar, I. L., Barfod, D. N., Halton, A. M., Smith, D. J. (2020a). Evidence for southward subduction of the Mongol-Okhotsk oceanic plate: Implications from Mesozoic adakitic lavas from Mongolia. Gondwana Research., 79, 140-156. https://doi.org/10.1016/j.gr.2019.09.007

Sheldrick, T. C., Barry, T. L., Dash, B., Gan, C., Millar, I. L., Barfod, D. N., Halton, A. M. (2020b). Simultaneous and extensive removal of the East Asian lithospheric root. Scientific Reports, 10, 4128. https://doi.org/10.1038/s41598-020-60925-3

Sheldrick, T. C., Hahn, G., Ducea, M. N., Stoica, A. M., Constenius, K., Heizler, M. (2020c). Peridotite versus pyroxenite input in Mongolian Mesozoic-Cenozoic lavas, and dykes. Lithos, 376-377. https://doi.org/10.1016/j.lithos.2020.105747

Skuzovatov, S. (2021). Nature and (in-)coherent metamorphic evolution of subducted continental crust in the Neoproterozoic accretionary collage of SW Mongolia. Geoscience Frontiers, 12 (3), 101097. https://doi.org/10.1016/j.gsf.2020.10.004

Stosch, H., Ionov, D., Puchtel, I., Galer, S., Sharpouri, A. (1995). Lower crustal xenoliths from Mongolia and their bearing on the nature of the deep crust beneath central Asia. Lithos, 36(3), 227-242. https://doi.org/10.1016/0024-4937(95)00019-4

Takahashi, E., Nakajima, K., Wright, T. L. (1998). Origin of the Columbia River basalts: Мelting model of a heterogeneous plume head. Earth and Planetary Sciences Lett., 162, 63-80. https://doi.org/10.1016/S0012-821X(98)00157-5

Turner, M., Turner, S., Blatter, D., Maury, R., Perfit, M., Yogodzinski, G. (2017). Water contents of clinopyroxenes from sub-arc mantle peridotites. Wiley Island Arc, 26 (5). https://doi.org/10.1111/iar.12210

Wiechert, U., Ionov, D., Wedepohl, K. (1997). Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib. Mineral. Petrol., 126, 345-364. https://doi.org/10.1007/s004100050255

Xia, Q.-K., Liu, J., Kovács, I., Hao, Y.-T., Li, P., Yang, X.-Z., Chen, H., Sheng, Y.-M. (2019). Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications. National Science Review, 6 (1), 125-144. https://doi.org/10.1093/nsr/nwx016

Xu, W., Gao, S., Yang, D.-B., Pei, F.-P., Wang, Q.-H. (2009). Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos, 107, 269-280. https://doi.org/10.1016/j.lithos.2008.11.004

Yarmolyuk, V. V., Kozlovsky, A. M., Travin, A. V., Kirnozova, T. I., Fugzan, M. M., Kozakov, I. K., Plotkina, Yu. V., Eenzhin, G., Oyunchimeg, Ts., Sviridova, O. E. (2019). Duration of formation and geodynamic nature of giant batholiths of Central Asia: data of geological and geochronological studies Khangai batholith. Stratigraphy. Geological correlation, 27 (1), 79-102. https://doi.org/10.31857/0869-592X27179-102

Yarmolyuk, V. V., Kozlovskiy, A. M., Savatenkov, V. M., Kudryashova E. A., Kuznetsov M. V. (2020). Late Mesozoic Eastern Mongolia volcanic area: structure, magmatic associations, and sources of magmatism. Petrology, 28 (6), 563-590. https://doi.org/10.1134/S0869591120060053

Yücel, C., Arslan, M., Temizel, I., Yazar, E. A., Ruffet, G. (2017). Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research, 45, 65-86, https://doi.org/10.1016/j.gr.2016.12.016

Zorin, Yu. (1999). Geodynamics of the western part of the Mongol-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, 306, 33-56. https://doi.org/10.1016/S0040-1951(99)00042-6

Загрузки

Опубликован

17.10.2023

Как цитировать

Кузнецов, М. В. и Саватенков, В. М. (2023) «Моделирование процессов смешения расплавов перидотитового и мафического субстратов на малых глубинах континентальной метасоматизированной литосферной мантии. К вопросу о генезисе раннемелового вулканизма Восточной Монголии», Вестник Санкт-Петербургского университета. Науки о Земле, 68(3). doi: 10.21638/spbu07.2023.309.

Выпуск

Раздел

Статьи